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PREFACE

Many physical problems which are usually solved by differential
equation methods can be solved more effectively by integral equation
methods. Indeed, the latter have been appearing in current literature
with increasing frequency and have provided solutions to problems
heretofore not solvable by standard methods of differential equations.
Such problems abound in many applied fields, and the types of solutions
explored here will be useful particularly in applied mathematics,
theoretical mechanics, and mathematical physics.

Each section of the book contains a selection of examples based on
the technique of that section, thus making it possible to use the book as
the text for a beginning graduate course. The latter part of the book will
be equally useful to research workers who encounter boundary value
problems. The level of mathematical knowledge required of the reader
is no more than that taught in undergraduate applied mathematics
courses. Although no attempt has been made to attain a high level of
mathematical rigor, the regularity conditions for every theorem have
been stated precisely. To keep the book to a manageable size, a few long
proofs have been omitted. They are mostly those proofs which do not
appear to be essential in the study of the subject for purposes of
applications.

We have omitted topics such as Wiener-Hopf technique and dual
integral equations because most of the problems which can be solved by
these methods can be solved more easily by the integral equation
methods presented in Chapters 10 and 11. Furthermore, we have con-
centrated mainly on three-dimensional problems. Once the methods
have been grasped, the student can readily solve the corresponding plane
problems. Besides, the powerful tools of complex variables are available
for the latter problems.

The book has developed from courses of lectures on the subject given
by the author over a period of years at Pennsylvania State University.

Xi



xii PREFACE

Since it is intended mainly as a textbook we have amitted references to
the current research literature. The bibliography contains references to
books which the author has consulted and to which the reader is
referred occasionally in the text. Chapter 10 is based on author’s joint
article with Dr. D. L. Jain (SI4AM Journal of Applied Mathematics, 20,
1971) while Chapter 11 is based on an article by the author (Journal aof
Mathematics and Mechanies, 19, 1970, §25-6356). The permission of the
publishers of these two journals is thankfully acknowledged. These
articles contain references to the current research literature pertaining
to these chapters. The most important of these references are the
research works of Professor W. E. Williams and Professor B. Noble,

Finally, I would like to express my gratitude to my students Mr. P.
Gressis, Mr. A. 8. Ibrahim, Dr. D. L. Jain, and Mr. B. K. Sachdeva for
their assistance in the preparation of the textual material, to Mrs. Suzie
Mostoller for her pertinent typing of the manuscript, and to the staff of
Academic Press for their helpful cooperation.
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Theory and Technique






INTRODUCTION CHAPTER 1

1.1. DEFINITION

An integral equation is an equation in which an unknown function
appears under one or more integral signs. Naturally, in such an equation
there can occur other terms as well, For example, for a<s<b,
a <t < b, the equations

b
A9 = [ KGs,ng0) dt O
) ]
9) = f&) + [ K Dg i, @)
b
96) = [ K0 lg O @, O

where the function g(s) is the unknown function while all the other
functions are known, are integral equations. These functions may be
complex-valued functions of the real variables s and .

Integral equations occur naturally in many fields of mechanics and
mathematical physics, They also arise as representation formulas for the
solutions of differential equations. Indeed, a differential equation can be

1



2 1/INTRODUCTION

replaced by an integral equation which incorporates its boundary con-
ditions. As such, each solution of the integral equation automatically
satisfies these boundary conditions. Integral equations also form one of
the most useful tools in many branches of pure analysis, such as the
theories of functional analysis and stochastic processes.

One can also consider integral equations in which the unknown
function is dependent not only on one variable but on several variables.
Such, for example, is the equation

9 = f5) + [ Kis. gy de , 4

where 5 and ¢ are n-dimensional vectors and (2 is a region of an »-
dimensional space. Similarly, one can also consider systems of integral
equations with several unknown functions.

An integral equation is called linear if only linear operations are
performed in it upon the unknown function. The equations (1) and (2)
are linear, while (3} is nonlinear. In fact, the equations (1) and (2} can be
written as

Lig(s)] =f(s), ()

where L is the appropriate integral operator. Then, for any constants ¢,
and ¢,, we have

Lleig:1(s) +¢,92(50) = ¢ LL{g; ()] + ¢2 L[g2(5)1 . (6)

This is the general criterion for a linear operator. In this book, we shall
deal only with linear integral equations.
The most general type of linear integral equation is of the form

g () =6+ [ K g @ dr, ()

where the upper limit may be either variable or fixed. The functions £, A,
and X are known functions, while g is to be determined; 4 is a nonzero,
real or complex, parameter. The function K(s,?) is called the kernel.
The following special cases of equation (7) are of main interest.

{i) FREDHOLM INTEGRAL EQUATIONS. In all Fredholm integral
equations, the upper limit of integration b, say, is fixed.
(i) In the Fredholm integral equation of the first kind, A(s)}=0.



1.2, REGULARITY CONDITIONS 3
Thus,

b
)+ [ Keng@de = 0. ®)

(ii} Tn the Fredholm integral equation of the second kind, A(s)=1;

b
Q(S)=f(S)+?~_[K(S,f)9(!) dr . &)

(iii) The homogeneous Fredholm integral equation of the second
kind is a special case of (i) above. In this case, f(s) =0;

-]
g(s) = AIK(S,I)g{t) dr . (10)

(ii) VOLTERRA EQUATIONS. Volterraequationsofthefirst, homo-
geneous, and second kinds are defined precisely as above except that
b = s is the variable upper limit of integration.

Equation (7) itself is called an integral equation of the third kind.

(iii) SINGULAR INTEGRAL EQUATIONS. When one or both
limits of integration become infinite or when the kernel becomes infinite
at one or more points within the range of integration, the integral
equation is called singular. For example, the integral equations

9 =S+ 4 [ (exp - |s—)g () an

and
Ssy = _[ [Hs=0"]g(®dt, O<a<l (12)

are singular integral equations.

1.2. REGULARITY CONDITIONS

We shall be mainly concerned with functions which are either con-
tinuous, or integrable or square-integrable. In the subsequent analysis,
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it will be pointed out what regularity conditions are expected of the
functions involved. The notion of Lebesgue-integration is essential to
modern mathematical analysis. When an integral sign is used, the
Lebesgue integral is understood, Fortunately, if a function is Riemann-
integrable, it is also Lebesgue-integrable, There are functions that are
Lebesgue-integrable but not Riemann-integrable, but we shall not
encounter them in this book. Incidentally, by a square-integrable
function g(7), we mean that

b
[lg@?dr < o (1)

This is called an #,-function. The regularity conditions on the kernel
K(s, r) as a function of two variables are similar. It is an #,-function if:

(a) for each set of values of 5,7 in the squarea s s < bagr< b,

bb
f 1K (s, )|? dsdt < o0, )

aa
(b) for each value of sina<s < b,
b
_[|K(s,t)|2 dt < oo, 3)
a

(c)foreach value of rina<r< b,

il
[1KG D2 ds < . @

1.3. SPECIAL KINDS OF KERNELS

(i) SEPARABLE OR DEGENERATE KERNEL. A kernel K(s, 1) is
called separable or degenerate if it can be expressed as the sum of a
finite numbet of terms, each of which is the product of a function of s
only and a function of ¢ only, i.e.,

K(s,1) = é; () by (1) - (1)



1.5, CONVOLUTION INTEGRAL 5

The functions 4;{s) can be assumed to be linearly independent, otherwise
the number of terms in relation (1) can be reduced (by linear inde-
pendence it is meant that, if ¢, a, +c0;++-+¢,a,=0, where ¢; are
arbitrary constants, then ¢; = ¢, =---=¢,=0).

(i) SYMMETRIC KERNEL. A complex-valued function K(s,?) is
called symmetric (or Hermitian) if K (s, 1) = K*(r, 5), where the asterisk
denotes the complex conjugate. For a real kernel, this coincides with
definition K(s, 1) = K(t,5).

1.4. EIGENVALUES AND EIGENFUNCTIONS

If we write the homogeneous Fredholm equation as

b
[Ksngwd = gy,  w=1/2,

we have the classical eigenvalue or characteristic value problem; u is
the eigenvalue and g {f) is the corresponding eigenfunction or character-
istic function. Since the linear integral equations are studied in the form
(1.1.10), it is 4 and not 1/4 which is called the eigenvalue.

1.5. CONVOLUTION INTEGRAL

Many interesting problems of mechanics and physics lead to an
integral equation in which the kernel K (s, ) is a function of the difterence
{(s—1) only:

K(s,0) = k{(s—1n), (1)

where k is a certain function of one variable. The integral equation

9() = A1) + 4 [ k(=D g dr, @)

and the corresponding Fredholm equation are called integral equations
of the convolution type.
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The function defined by the integral
jk(s—:)g(:) dt = fk(:)g(s—;) d 3)
] 0

is called the convolution or the Faltung of the two functions & and g.
The integrals occurring in (3) are called the convolution integrals.

The convolution defined by relation (3} is a special case of the standard
convolution

jk(s—r)g(r) dr = fk(x)g(s—;) dr . (4)

The integrals in (3} are obtained from those in (4) by taking £(f) =
g()=0,forr<0and {>s.

1.6. THE INNER OR SCALAR PRODUCT OF TWO FUNCTIONS

The inner or scalar product (¢, ) of two complex #,-functions ¢
and f of a real variable s, a € 5 € b, is defined as

b
(b0} = f@(f) Y dr (0

Two functions are called orthogonal if their inner product is zero, that
is, ¢ and ¢ are orthogonal if (¢, ) =0. The norm of a function ¢{r)
is given by the relation

b b
161 = [ [ e a]* = [[ 1012 ar]*. )

A function ¢ is called normalized if |¢| = 1. Tt is obvious that a nonnull
function (whose norm is not zero) can always be normalized by dividing
it by its norm.

We shall have a great deal more to say about these ideas in Chapter 7.
For the time being, we shall content ourselves with mentioning the
Schwarz and Minkowski inequalities,
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(@)l < [¢] ¥l 3

and
le+¥l < lol + 1wl ., )]

respectively.

1.7. NOTATION

For Fredholm integral equations, it will be assumed that the range of
integrations is @ to b, unless the contrary is explicitly stated. The
quantities @ and b will be omitted from the integral sign in the sequel.



INTEGRAL EQUATIONS WITH CHAPTER 2
SEPARABLE KERNELS

2.1. REDUCTION TO A SYSTEM OF ALGEBRAIC EQUATIONS

In Chapter 1, we have defined a degenerate or a separable kernel
K(s,1) as

H

K(s,1) = Z a(s) by(1) , ()

whete the functions a,(s),...,4,(s) and the functions &,(2),...,6,()
are linearly independent, With such a kernel, the Fredholm integral
equation of the second kind,

9() = /) + 4 [ K(s, g (1) dt @

becomes

96) = f5) + 4 Y ae) [ b g de 3)
i=1 >

It emerges that the technique of solving this equation is essentially
dependent on the choice of the complex parameter 4 and on the definition
of

o= [bg@d. @
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The quantities ¢; are constants, although hitherto unknown.
Substituting (4) in (3) gives

() = fs) + A z] cals), ©)

and the problem reduces to finding the quantities ¢;. To this end, we put
the value of g(s) as given by (5) in (3) and get

Sa@ - [bOUO+1 5 aq@ldy<0.  ©

i=1

But the functions g,(s) are linearly independent; therefore,
a- [BOUO+1Y qa@ld =0, i=1..1. (D
k=1

Using the simplified notation ‘
[afod=f, [bOa®d = a, ®)
where f; and a;; are known constants, equation (7) becomes
Ci—AkZ acr =Ji i=1,.,n; ®
=1

that is, a system of » algebraic equations for the unknowns ¢, The
determinant D(4) of this system is

1-Aa;;  —Adayz - —Aday,
—Aa 1—Aa e —Aay,

D) = . 23 22 2 , (10)
-4 i F‘lanl i I_‘laﬂﬂ

which is a polynomial in A of degree at most ». Moreover, it is not
identically zero, since, when A =0, it reduces to unity.

For all values of A for which D (1) # 0, the algebraic system (9), and
thereby the integral equation {2), has a unique solution. On the other
hand, for all values of A for which D(i) becomes equal to zero, the
algerbaic system (9), and with it the integral equation (2), either is
insoluble or has an infinite number of solutions. Setting 1= 1/u in
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equation {9), we have the eigenvalue problem of matrix theory. The
eigenvalues are given by the polynomial D(4) =0. They are also the

eigenvalues of our integral equation.

Note that we have considered only the integral equation of the second

kind, where alone this method is applicable.
This method is illustrated with the following examples.

2.2. EXAMPLES

Example 1. Solve the Fredholm integral equation of the second kind

1
gi(s) = s + AJ-(sr2 +52g(Hde.
0

The kernel K(s,7) = st* +3% is separable and we can set
i 1
¢, = _ftzg(r) dt, ;= _ftg(r) dt .
¢ o

Equation (1) becomes
gs) = 5 + Ac, 5 + Aey 57,
which we substitute in (1) to obtain the algebraic equations

c; = 1+ $ie, + Hhey,
¢y =3+ e, + Ao, .

The solution of these equations is readily obtained as

¢, = (60+1)j(240—120A—4%), ¢, = 80/(240—1202—2%) .

From (2) and (4), we have the solution
g(5) = [(240—601) s + 80As?J/(240— 1204 —2%) .
Example 2. Solve the integral equation
1
g(s) = fis) + 4 [ s+ g () de
1]

and find the eigenvalues.

(I

(2)

3

4

(5)

(®)
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Herev al(s) =4, aZ(S) = ls bl (I) = ]a b2(t) =1,

1 1
a,,=jrdt=%, a,zz_fdr=l,
Q Q
1 1
a2,=J.tzdt=%, an:jtdt-——i,
] ]
1 1
fi=[fwar, f={vwa.
Q ¢

Substituting these values in (2.1.9), we have the algebraic system
(1—3 ey — dey = £, e+ (14D, =1, .

The determinant D(4) =0 gives A2+124—12=0. Thus, the eigen-
values are

A =(—6+43), dy=(-6-43).

For these two values of 1, the homogeneous equation has a nontrivial
solution, while the integral equation (6) is, in general, not soluble.
When A differs from these values, the solution of the above algebraic
system is

e; = [—12f, + A6f, — 12/)]/(A* + 124 — 12),
e; = [—12f; — A4, — 6/)1/(A* + 124 - 12) .
Using the relation (2.1.5), there results the solution

1

g(s) = fl9) + »‘-.[

4]

6(L—2)(s+0 — 1245t — 4
A2+ 120—12

A
Jin) dt . N

The function I'(s, #; 4),
T(s,6;4) = [6(A—2)(s+1) — 124sr — 441/(A> + 124 — i2), (8)

is called the resolvent kernel. We have therefore succeeded in inverting
the integral equation because the right-hand side of the above formula is
a known quantity.
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Example 3. Invert the integral equation
2x
g(s) = fs) + 4 | (sinscos g (n dt . ©)
1]
As in the previous examples, we set

I
¢ = j (cos ) g (1) de
[H]

to obtain
g{s) = f(s) + Acsins . (10)

Multiply both sides of this equation by coss and integrate from 0
to 2zn. This gives

2x
¢ = [ cosnfwydr. (1)
D
From (10) and {11), we have the required formula:
27
g = f(5)+ A f (sinscos ) f(1) dt . (12)
. 0
Example 4. Find the resolvent kernel for the integral equation
1
g(s) = ) + 4 [ st + D) gy dt (13)
-1

For this equation,
al{s) =5, aZ(S) = Sz L] bl(t) = ts bZ(t) = 12 ]

a, =%, a3 = a3 =0, az; = %,
1

1
1= jrf(:)dr, fi = frzf(r)dr.
-1

—I
Therefore, the corresponding algebraic system is
al=30)=fi, cl-#)=,;. (14)

Substituting the values of ¢, and ¢, as obtained from (14) in (2.1.9)
yields the solution
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st 5?7
9(s) nf(s)‘i‘lJ-l:(]_%i)-i-(l_%)h):lf(t)dt. (15)

Thus, the resolvent kernel is
st s2 8

T680 = =5 Y ises)

(16)

We shall now give examples of homogeneous integral equations.

Example 5. Solve the homogeneous Fredholm integral equation

i
g(s) = Aje’e'g(r)dt. an
0

Define
1
¢ = j eg(nde,
0

so that (17) becomes
g(s) = dce* . (18)
Put this value of g(s5) in (17) and get

L
deet =3 [ & [ace] dt = 342 & c(?— 1)
Q
or

S —Me*=1)} = 0.

If c=0 or A =0, then we find that g =0. Assume that neither ¢ =0
nor A =0; then, we have the cigenvalue

A=2/e*=1).

Only for this value of A does there exist a nontrivial solution of the
integral equation (17). This solution is found from (18) to be

g(s) = [2/(e*— Dl . (19)
Thus, to the eigenvalue 2/(e? — 1) there corresponds the eigenfunction ¢*.

Example 6. Find the eigenvalues and eigenfunctions of the homo-
geneous integral equation
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2
gs) = 4 [ [st+(Uslg () dt . (20)
1

Comparing this with (2.1.3), we have
a8 =35, a,(5) = 1/s, biny=1t, ba(1) = 1.
an =1, a2 =@ay =1, a2 =%.

The formula (2.1.9) then yields the following homogeneous equations:

(1-3e; — e, =0, —Adey +{(1—3)e; = 0, (21)
which have a nontrivial solution only if the determinant
DY) = lj’L 1::11 — 1= (17J6)4 + (1/6) 42,

vanishes. Therefore, the required eigenvalues are

Ay = 3(17 + \/265) = 16.6394 ;
Ay = (17 — /265) ~ 0.3606 .
The solution corresponding to A, is ¢; ~ —2.2732¢,, while that corre-

sponding to 4, is ¢,” ~0.4399¢,". The eigenfunctions of the given
integral equation are found by substituting in (2.1.5):

g, (5) ~ 16.639¢, [s — 2.2732(1/s5)] ,
ga(s) ~ 0.3606¢, [s 4 0.4399(1/5)] ,

(22)

(23)

where ¢, and ¢’ are two undetermined constants.

2.3. FREDHOLM ALTERNATIVE

In the previous sections, we have found that, if the kernel is separable,
the problem of solving an integral equation of the second kind reduces
to that of solving an algebraic system of equations. Unfortunately,
integral equations with degenerate kernels do not occur frequently in
practice. But since they are casily treated and, furthermore, the results
derived for such equations lead to a better understanding of integral
equations of more general types, it is worthwhile to study them. Last,
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but not least, any reasonably well-behaved kernel can be written as an
infinite series of degenerate kernels,

When an integral equation cannot be solved in closed form, then
recourse has to be taken to approximate methods. But these approximate
methods can be applied with confidence only if the existence of the
solution is assured in advance. The Fredholm theorems explained in
this chapter provide such an assurance. The basic theorems of the general
theory of integral equations, which were first presented by Fredholm,
correspond to the basic theorems of linear algebraic systems. Fredholm’s
classical theory shall be presented in Chapter 4 for general kernels. Here,
we shall deal with degenerate kernels and borrow the results of linear
algebra.

In Section 2.1, we have found that the solution of the present problem
rests on the investigation of the determinant (2.1.10) of the coefficients of
the algebraic system (2.1.9). i D()# 0, then that system has only one
solution, given by Cramer’s rule

0= (Dlifl + DZIf2 + o+ Dn!ﬁ)l’{D(A) s [ = 1,2,"‘,.” s (1)

where D,; denotes the cofactor of the (A, /)th element of the determinant
(2.1.10). Consequently, the integral equation (2.1.2) has the unique
solution (2.1.5), which, in view of (1}, becomes

H

Dyifi + Dyfs + - + Dy f,

9 =S +1 o0 al), @
=1
while the corresponding homogeneous equation
g(s) = 2 [ Kis,ng(n dt 3

has only the trivial solution g(s)=0.
Substituting for £; from (2.1.8) in (2), we can write the solution g (s) as

g(5) = f(s) + [4/ D]

% [{ 3 EDuby (@) + Darba() + - + Db (a0 dr.

4)
Now consider the determinant of (1 + [)th order
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0 a,(s) ax(s) o a8
bl(t) l—)..a|1 —Aalz . —Aal“
D, )= — | () —day, l—dayy - —day,|. (5
bty —la,, —Aa, - 1-1ia,

By developing it by the elements of the first row and the corresponding
minors by the elements of the first column, we find that the expression in
the brackets in equation (4) is D(s, t; ). With the definition

Fis,t;4) = D(s, ;1) DAY, ()
equation (4) takes the simple form
g(s) = fls) + A [ T(s, 0 f(0 dt . (7

The function I'(s,#;A) is the resolvent {or reciprocal) kernel we have
already encountered in Examples 2 and 4 in the previous section. We
shall see in Chapter 4 that the formula (6) has many important con-
sequences. For the time being, we content ourselves with the ocbservation
that the only possible singular points of I"(s, 7; A} in the A-plane are the
roots of the equation D(1)=0, i.e, the eigenvalues of the kernel
K(s, 1.

The above discussion leads to the following basic Fredholm theorem.

Fredholm Theoram. The inhomogeneous Fredholm integral
equation (2.1.2) with a separable kernel has one and only one solution,
given by formula (7). The resolvent kernel (s, ¢; 1) coincides with the
quotient (6) of two polynomials.

If (1) =0, then the inhomogeneous equation (2.1.2) has no solution
in general, because an algebraic system with vanishing determinant
can be solved only for some particular values of the quantities f,. To
discuss this case, we write the algebraic system (2.1.9) as

I-Aye =1, (®)

where I is the unit (or identity) matrix of order n and A is the matrix
(a;p). Now, when D(4) =0, we observe that for each nontrivial solution
of the homogeneous algebraic system

(I-iA)e =0 (9)
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there corresponds a nontrivial solution (an eigenfunction) of the homo-
geneous integral equation (3). Furthermore, if 2 coincides with a certain
eigenvalue Ay for which the determinant D(4,) =|1— 1;A| has the rank p,
1 € p € n, then there are r = n—p linearly independent solutions of the
algebraic system (9); r is called the index of the eigenvalue 4,. The same
holds for the homogeneous integral equation (3). Let us denote these r
linearly independent solutions as gg,(8), 202(5), **+, g0, (5), and let us
also assume that they have been normalized. Then, to each eigenvalue
Ag of index r = n—p, there corresponds a solution g, (s) of the homo-
gencous integral equation (3} of the form

do(s) = kz; o goul(s) »

where o, are arbitrary constants.

Let m be the multiplicity of the eigenvalue 1y, i.e., D{1) =0 has
m equal roots A;. Then, we infer from the theory of linear algebra that,
by using the elementary transformations on the determinant |I—AiA|,
we shall have at most m+ | identical rows and this maximum is achieved
only if A is symmetric. This means that the rank p of D(Ay) is greater
than or equal to #—m. Thus,

r=n-psn—(n—-m=m,

and the equality holds only when ¢;; = a;;.

Thus we have proved the theorem of Fredholm that, if A=4; is a
root of multiplicity m = 1 of the equation D(1) =0, then the homo-
geneous integral equation (3) has r linearly independent solutions;
r is the index of the eigénvalue such that | <r < m.

The numbers » and m are also called the geometric multiplicity and
algebraic multiplicity of A, respectively. From the above result, it
follows that the algebraic multiplicity of an eigenvalue must be greater
than or equal to its geometric multiplicity.

To study the case when the inhomogeneous Fredholm integral
equation (2.1.2) has solutions even when D{1)=0, we need to define
and study the transpose of the equation (2.1.2). The integral equation’

() =)+ 4 [ K@ sppio di (10)

' We shall consider only real functions here even though the resulis are easily
exlended to complex functions. Qutcome is the same in both the cases.
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is called the transpose (or adjoint) of the equation (2.1.2). Observe that
the relation between (2.1.2) and its transpose (10) is symmetric, since
(2.1.2) is the transpose of (10).

If the separable kernel K(s,#) has the expansion (2.1.1), then the
kernel K(t,s) of the transposed equation has the expansion

H

K(ts) = Y a0 bis) . an

i=1
Proceeding as in Section 2.1, we end up with the algebraic system
@-iATec =f, (12)

where AT stands for the transpose of A and where ¢; and f; are now
defined by the relations

o= [a@b®d, fi=[a@fod. (13)

The interesting feature of the system (12) is that the determinant D(J4)
is the same function as (2.1.10) except that there has been an inter-
change of rows and columns in view of the interchange in the functions
a, and b;. Thus, the eigenvalues of the transposed integral equation are
the same as those of the original equation. This means that the transposed
equation (10) also possesses a unigue solution whenever (2.1.2) does.

As regards the eigenfunctions of the homogeneous system

(I-1AT)e =0, (14)

we know from linear algebra that these are different from the correspond-
ing cigenfunctions of the system (9). The same applies to the eigen-
functions of the transposed integral equation. Since the index r of A, is
the same in both these systems, the number of linearly independent
eigenfunctions is also » for the transposed system. Let us denote them by
Yo Wo2. s, and let us assume that they have been normalized.
Then, any solution y,(s) of the transposed homogeneous integral
equation :

Wis) = 4 [ K(ts)w(n dt (15)
corresponding to the eigenvalue A, is of the form

Wols) = Zﬁi Yo (8) ,

where f; are arbitrary constants.
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We prove in passing that eigenfunctions g(5) and i (s) corresponding
to distinct eigenvalues 1, and 1,, respectively, of the homogeneous
integral equation (3) and its transpose (15) are orthogonal. In fact,
we have

96 = & [ Kng@dr, ¥ =4 [ K9 pindr

Multiplying both sides of the first equation by 2, (s} and those of the
second equation by A,g(s), integrating, and then subtracting the
resulting equations, we obtain

b
(a=dy) [ g0 ds = 0.

But 2, # 1,, and the result follows.

We are now ready to discuss the solution of the inhomogeneous
Fredholm integral equation (2.1.2) for the case D(4) =0. In fact, we
can prove that the necessary and sufficient condition for this equation
to have a solution for A= 4, a root of D(i)=0, is that f(s) be
orthogonal to the » eigenfunctions yr,; of the transposed equation (13).

The necessary part of the proof follows from the fact that, if equation
(2.1.2) for i =14, admits a certain solution g{s), then

[fsyboi&) ds = [ 9@ ¥als) ds
— 4o [ Voo ds [ K(s, g0 de
= [a6vats) ds
- ;Lojg(:) drjx(s,r)wm(s) ds =0,

because A, and g, (s) are eigenvalues and corresponding eigenfunctions
of the transposed equation.

To prove the sufficiency of this condition, we again appeal to linear
algebra. In fact, the corresponding condition of orthogonality for the
linear-algebraic system assures us that the inhomogeneous system (8)
reduces to only #—r independent equations. This means that the rank
of the matrix (I—AA) is exactly p = n—r, and therefore the system (8)
or (2.1.9) is soluble. Substituting this solution in (2.1.5), we have the
solution to our integral equation.

Finally, the difference of any two solutions of (2.1.2) is a solution of
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the homogeneous equation (3). Hence, the most general solution of the
inhomogeneous integral equation (2.1.2) has the form

g(s) = G(8) + &, 96, (5) + %3802 () + -+ + %, g0, (5) , (16)

where G(s) is a suitable linear combination of the functions g, (s),
(7] (S), T a,,(s)‘

We have thus proved the theorem that, if A= 4; is a root of multi-
plicity mz1 of the equation D(1)=0, then the inhomogeneous
equation has a solution if and only if the given function f(s) is orthogonal
to all the eigenfunctions of the transposed equation.

The results of this section can be collected to establish the following
theorem.

Fredholm Alternative Theorem. Either the integral equation
6(s) = f(5) + A [ K(s, g0y dt (17

with fixed 1 possesses one and only one solution g{s) for arbitrary
Zy-functions f(s) and K{(s,¢), in particular the solution g=10 for
F=0; or the homogeneous equation

gi(s) = Afx(s, 1) g(f) de (18)

possesses a finite number r of linearly independent solutions gg;,
i=1,2,--,r. In the first case, the transposed inhomogeneous equation

Wls) = Sl + 4 | Kt v (0) d (19)

also possesses a unique solution. In the second case, the transposed
homogenecus equation

W) = A [ Kt.9v (@) dt (20)

also has r linearly independent solutions yg;, i=1,2,-+,¢; the in-
homogeneous integral equation (7) has a solution if and only if the given
function f{(5) satisfies the » conditions

L) = [fOVads =0,  i=12-r. @)

In this case, the solution of (17) is determined only up to an additive
linear combination > {_; ;g
The following examples illustrate the theorems of this section.
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2.4, EXAMPLES

Example 7. Show that the integral equation
2n
g(s) = f(5) + (Ufm) [ [sins+01g(» dt 0]
]

possesses no solution for f(s) = s, but that it possesses infinitely many
solutions when f(s) = 1.
For this equation,

K(s,t) = sinscost 4 cosssint,

a,{5) = sins, a;(s) = coss, b (t) = cost, by(r) = sint.
Therefore,
2
a, = fsinxcostdz =0=a,,,
[+]
2r

012=fcosztdt=ﬂ=a;_1 .
4]

1 —An
—An |
The eigenvalues are 4, = l/m, A, = —1/x and equation (1) contains

4y =1/m. Therefore, we have to examine the eigenfunctions of the trans-
posed equation (note that the kernel is symmetric)

DY) =

= 1—A%n2. )

2z
g(s) = (/) [ sin(s+ng( dr . 3)
1]
The algebraic system corresponding to (3) is
€ — Ane, =0, —Adrc, + ¢, =0,
which gives
=y for A, = ljm; ey = —0Cy for A, = —1/rn.

Therefore, the eigenfunctions for A, = 1/x follow from the relation
(2.1.5) and are given by
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g(s) = clsins + coss) . 4
Since
2m

I(ssins + scoss)ds = =2 £ 0,
0
while

2r
j(sins +cossyds =0,
Q

we have proved the result.

Example 2. Solve the integral equation

1
g(s) = S+ 4 [ (1-3s)g (D) dr (5)

1]

The algebraic system (2.1.9) for this equation is
(1-Des+34ey = f, —Fe +(1+De; =13, (6)
while
Tt I

OB R EEICE R Q)

Therefore, the inhemogeneous equation (5) will have a unique solution
if and only if A # £ 2. Then the homogeneous equation

1
9() = 4 [ (1=3s)g (1) at ®)
(13

has only the trivial solution,

Let us now consider the case when 4 is equal to one of the eigenvalues
and examine the eigenfunctions of the transposed homogeneous
equation

1
g(s) = Aj(l-m)g(t) dt . (9)

For i = +2, the algebraic sysiem (6) gives ¢, = 3¢,. Then, (2.1.5) gives
the eigenfunction

g&) =c(i-v), (10)
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where ¢ is an arbitrary constant. Similarly, for 1 = — 2, the correspond-
ing eigenfunction is
gis) = ¢(1-3s). (11)
It follows from the above analysis that the integral equation

g(s) = f(5) +2 [ 1-3s)g (1) i

will have a solution if f(s5) satisfies the condition
1

f(l—s)f(s) ds =0,

[+]
while the integral equation

1
g(s) = fis) — 2[(1-3st)g(:) dt

will have a solution if the following holds:
i

j(l—ss)f(s)ds =0.

o]

2.5. AN APPROXIMATE METHOD

The method of this ¢hapter is useful in finding approximate solutions
of certain integral equations. We illustrate it by the following example:

gls) = ¢ — s—fs(e"’—l)g(r) dr . (N
0

Let us approximate the keinel by the sum of the first three terms in its
Taylor series:

K{t,5) = s(e =) 2 st + 3712 + 457, (2)

that is, by a separable kernel. Then the integral equation takes the form

1
Q(S)=6"‘-S-J.(Szf+i33t2+%s4t3)g(t)dt. (3)
1]
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Since the kernel is separable, we require the solution in the form
g8y = & — s+ 0,57 + 0,8 + ¢y 5*. (4)

Following the method of this chapter, we find that the constants
£, ¢a, €5 satisfy the following algebraic system:

(SHyc+ (US)es + (16)es = =23,
(/S + (13/6) ey + (1/T)ey = (9/4) — e, (5)
(1/6)e; + (1) ey + (49/8)c5 = 2e — (29/5) ,
whose solution is
¢, = —0.5010, ¢,=—01671, ¢;=-00422. (6
Substituting these values in (4), we have the solution
g(s) = ¢ — 5 —0.50105% — 0.16715> — 0.04235* . (N
Now the exact solution of the integral equation (1) is
g(s)=1. ®

Using the approximate solution for s= 0, s = 0.5, and s = 1.0, the value
of g{s) from (7) is

g(0) = 1.0000, g(0.5) = 1.0000, g(l) = 1.0080, (9)

which agrees with (8) rather closely.
Tn Chapter 7 (see Section 7.7), we shall prove that an arbitrary
#;-kernel can be approximated in norm by a separable kernel.

EXERCISES
1. Consider the equation

9 =S+ A [ K5, D9 di

and show that for the kernels given in Table I the function D(4) has
the given expression.
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TABLE 1
Case Kernel b(l)
() +1 1F4
(ii) st 1—(4{3)
{iii} s+ 1—(24/3)— (443/43)

2. Solve the integral equation
n
9(5) = f(5) + & [ cos(s+1)g(e) dt
0

and find the condition that f(s) must satisfy in order that this equation
has a solution when A is an eigenvalue, Obtain the general solution if
J(s) =sin g, considering all possible cases.

3. Show that the integral equation

g(s) = A _|' (sin ssin 21) g (1) dt
1]

has no eigenvalues.

4. Solve the integral equation

g() = 1+4 [ 0g(ar,

considering separately -all the exceptional cases.

5. In the integral equation
I
gis) = s2+j(sinsr)g(:) dt
b}

replace sin st by the first two terms of its power-series development

, (s
sinst = st — —§T+

and obtain an approximate solution.



METHOD OF SUCCESSIVE CHAPTER 3
APPROXIMATIONS

3.1. ITERATIVE SCHEME

Ordinary first-order differential equations can be solved by the well-
known Picard method of successive approximations. An iterative
scheme based on the same principle is also available for linear integral
equations of the second kind:

9() = S + 4 [ K(s.0g (. (m

In this chapter, we present this method. We assume the functions f{(s)
and K(s, {) to be % ,-functions as defined in Chapter 1.

As a zero-order approximation to the desired function g(s), the
solution g4(s),

go(8) = f(5), 2)

is taken. This is substituted into the right side of equation (1) to give
the first-order approximation

91() = f9) + A [ Kis,ngo(n) dt . 3

This function, when substituted into (1), yields the second approxi-
mation. This process is then repeated; the (n+ 1)th approximation is

26
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obtained by substituting the nth approximation in the right side of (1).
There vesults the recurrence relation

Fr+1(5) = f(5) + 4 _[ K(s, 0 g, (1) dt . Q)

If g,(s) tends uniformly to a limit as #— oo, then this limit is the
required solution. To study such a limit, let us examine the iterative
procedure (4) in detail. The first- and second-order approximations are

g1(8) =fls)+ 1 _f K(s, 1) f(1) dt 3
and
9208) = S + 4 | K(s.01() de
+ 2 j K(s, 1) [ f K(t, 1) dx] @t . (6)

This formula can be simplified by setting
Ki(5.0) = J K(s, x) K(x,t) dx N
and by changing the order of integration: The result is

0:() = f) + 4 [ K5, 0f@y di + 2 [ Ka(s. 00/t (8)

Similarly,

g5(s) = () + 1 [ K(s, (0}

A2 f K, (s, N0 dt + A3 j Ki(s, D0 dt , (9)
where
Ki(s, ) = f K(s, %) Ky (x, 1) dx . (10)

By continuing this prc;cess, and denoting
K, (5,1) = j K(s.x) K, (x, 1) dx an
we get the (#+ D)th approximate selution of integral equation (1) as
9:() =S+ ¥ 3" [ Kuls /() dr (12

We call the expression K, (s, ) the mth iterate, where K, (s, £) = K(s, 1).
Passing to the limit as n — oo, we obtain the so-called Neumann series

§6) = limg,(s) = )+ 3 7 [ KawOf@de. (13

A+ &G
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It remains to determine conditions under which this convergence is
achieved. For this purpose, we attend to the partial sum (12) and apply
the Schwarz inequality (1.6.3) to the general term of this sum. This gives

| Kns 0 dil? < ([ 1KuGs, 012 ) [ L2 de . (19
Let D be the norm of f,
p* = [|fldr, (13)
and let C,* denote the upper bound of the integral
[ 1Kn(s 02 dt .
Hence, the inequality {14) becomes
| j K. (s, N dt|2 < C,2D*. (16)

The next step is to connect the estimate C,° with the estimate C,2.
This is achieved by applying the Schwarz inequality to the relation (11):

1K (s, |2 < f |K,,,_1(s,x)|2dx_|' |K(x, ]2 dx
which, when integrated with respect to ¢, vields

[ 1Kuts, 07 dt < B2Chy (7
where

B? = ” |K(x, |2 dxdr . (18)
The inequality (17) sets up the recurrence relation
C,? < B 202, (19)
From (16} and (19), we have the inequality
|ij(s, DA d|? < €2 D2 B2 (20)

Therefore, the general term of the partial sum (12) has a magnitude less
than the quantity DC, |A|"B™ ", and it follows that the infinite series
(13) converges faster than the geometric series with common ratio |i| 8.
Hence, if

|AB <1, 1)

the uniform convergence of this series is assured.



It will now be proved that, for given 4, equation (1) has a unique
solution. Suppose the contrary, and let g, (s) and g, {s) be two solutions
of equation (1):

9:(8) = f19) + 2 [ K(s,00g4 (Dt

g2(5) = f(5) + 2 j K(s, ) g, (1) dt .

By subtracting these equations and setting g,{s})—g,(s) = ¢(s), there
results the homogeneous integral equation

d(s) = A_[ K(s, () dt .
Apply the Schwarz inequality to this equation and get
[N < 142 [ K 0 dt [ o] ar,
which, when integrated with respect to s, becomes
J16@1ds < 1A ] 1K 01 dsde [ 1)) ds

(1148 [ |(9)]*ds < 0. (22)

or

In view of the inequality (21) and the nature of the function ¢(5) =

g.(5)—g3(s), we readily conclude that ¢(s)=0, i.e., g,(5) = g,(s).
What is the estimate of the error for neglecting terms after the nth

term in the Neumann series {13)? This is found by writing this series as

90 =/ + 3 [ Kals /O A+ RO . @)

Then, it follows from the above analysis that
IR, < DC,|A]"" " B/(1—[A] B} . 24

Finally, we can evaluate the resolvent kernel, as defined in the previous
chapter, in terms of the iterated kernels K, (s, #). Indeed, by changing
the order of integration and summation in the Neumann series (13),
we obtain

06 = 9+ [ L3 7 Kols. 01 S0 o
Comparing this with (2.3.7),
9() = ) +4 [T, s f0 dt, (25)
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we have

o
Cis, ) = 3 A" K, (50 . (26)
m=1
From the above discussion, we can infer (see Section 3.5) that the series
(26} is also convergent at least for |A| B < t. Hence, the resolvent kernel
is an analytic function of A, regular at least inside the circle |[4| < B~ 1.
From the uniqueness of the solution of (1), we can prove that the
resolvent kernel I'{s,¢; 1) is unique. In fact, let equation (1) have,
with 1= Ag, two resolvent kernels I'; (s, ¢; 4g) and [';(s,#; 4y). In view
of the uniqueness of the solution of (1), an arbitrary function f(s)
satisfies the identity

J5) + 4 f Ci(s, 500 dt = f(s) + 4o f Fals, t;20) /() dr . (27)
Setting (s, £; Ag) =T (s, £; Ap)— T3 (s, #; Ay}, we have, from (27),

[ nifd=0,

for an arbitrary function f{1). Let us take /() = ¥*(s,¢; 1), with fixed s.
This implies that
j W (s, t;Ag)|2dt = O,

which means that ¥{s,7;10)=0, proving the uniqueness of the
resolvent kernel.
The above analysis can be summed up in the following basic theorem.

Theoram. To each #;-keinel K(s, 1), there corresponds a unique
resolvent kernel ['{s,¢; 1) which is an analytic function of i, regular
at least inside the circle |A| < B!, and represented by the power
series (26). Furthermore, if f(s) is also an #,-function, then the unique,
#,-solution of the Fredholm equation (1) valid in the circle |1j < B!
is given by the formula (25).

The method of successive approximations has many drawbacks. In
addition to being a cumbersome process, the Neumann series, in general,
cannot be summed in closed form. Furthermore, a solution of the
integral equation (1) may exist even if |i| B> 1, as evidenced in the
previous chapter. In fact, we saw that the resolvent kernel is a quotient
of two polynomials of ath degree in A, and therefore the only possible
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singular points of I'(s, 7; ) are the roots of the denominator D(1) = 0.
But, for |1| B> 1, the Neumann series does not converge and as such

does not provide the desired solution. We shall have more to say about
these ideas in the next chapter.

3.2. EXAMPLES

Example T. Solve the integral equation
1
g() = f5)+ 4 [ @ gy dr. (1)
[+]

Following the method of the previous section, we have
Kis=¢e",

1
Ki(s, ) = J‘e’_"e"" dx = e .
0

Proceeding in this way, we find that all the iterated kernels coincide with
K(s, 1). Using (3.1.26), we obtain the resolvent kernel as

T(s.1;4) = KGO +A+42+-) = @~ (1=2) . )

Although the series (1+A+A%+--) converges only for |1 <1, the
resolvent kernel is, in fact, an analytic function of A, regular in the whole
plane except at the point A = 1, which is a simple pole of the kernel I,
The solution g(s) then follows from (3.1.25):

1
g(s) = f() — [WGA- D [ e fy e . €)
43
Example 2. Solve the Fredholm integral equation
1
gy = 1+ [ (1-3s0gdr 0
4]

and evaluate the resolvent kernel.
Starting with go(s) = 1, we have
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g,6) =1 +,1J'(1—3s:)d: =1+A(1—%s5),
[

1
20 = 1+ A (=30 [1+A(1 =301 dr = 1+ A1 —3s) + 342,
0

g =1+ A01=-3)+ 32+ 3230 =) + &4 + HAS -3y + -,

or

g(s) = I +3A2 + 2%+ ) [ + A(1-39)] . (5
The geometric series in {4) is convergent provided |4| < 2, Then,
g(s) = [4 +242-35))/(4 1%, (6)

and precisely the same remarks apply to the region of the validity of
this solution as given in Example 1.
To evaluate the resolvent kernel, we find the iterated kernels
Ki(s,t) = 1—3s¢,
i
Ky(s,0) = f(l—ssx)(l—sxr) dx =1—3(s+6) + 3Ist,

0

]
Ks(s,1) = j (1—-3s0[1 — 3Ce+6) + 3xf] dx
]

= #1350 = }K,(s5,0)

Similarly,

K.(s,1) = 1Ks(s,0)
and

KN(S’ t) = %Kn—— 2 (S, I!‘) .
Hence,

I(s,t;0) = Ky + AK, + A2 K3 + -+
= (1+3A7+ A4+ K + AL+ 372+ 4+ ) K,
=1+ =3 6+8 - 3(1-Ds)(1-32%), N
|4 < 2.
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Example 3. Solve the integral equation
gls) = 1+Aj[sin(s+r)]g(:)dt. )
4]

Let us first evaluate the iterated kernels in this example:
Kl(si t) = K(S, t) = sin(s+t) '

Ky(s,) = f [sin (s +x)] sin(x + £ dx

= dn{sinssin¢ + cosscosf] = dmcos(s—1),

1
Ky(s,0) = %RJ‘ [sin(s +x)] cos(x — 1) dx
4]

1
= %ﬂ:f (sinscosx + sinxcoss)
[H]

x {cosxcos ! + sinxsing) dx
= (4n)?[sinscosf + cosssint] = (n)’sin(s+17) .
Proceeding in this manner, we obtain
K, (5,0 = GnYcos(s— 9,
Ks(s, ) = Gm)*sin(s+90),
K50 = 3n)’ cos(s— 8, ete.

Substituting these values in the formula (3.1.13) and integrating, there
results the solution

g(s) = 24(coss)[1 + 3m)2 A% + 3m)* A% + -]
+A2r(sins)[1 +GrE AT 4GP A 41, O
or
g(® = 1 + [(QAcoss + A2 wsins)/(1 — $i%2a?)] . (10)
Since

B = ” sin(s+) dsdt = in? ,
oo

the interval of convergence of the series (9) lies between —\/ihr and

2/
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Example 4. Prove that the mth iterated kernel K, (s, 7) satisfies the
following relation:

Kuls,0) = [ Ko(5,%) K- (5, D dx (11)

where r is any positive integer less than m.
By successive applications of (3.1.11),

Ka(s) = [ - [ K(s.x) KOx1,0) - Koy, 8) ity - dxy . (12)

Thus, K,(s,f) is an (m—1)fold integral. Similarly, K,(s,x) and
K, _,.(x,tyare (r—1)- and (m—r—1)-fold integrals. This means that

| Kols, ) K (1 dix
is an {fn— 1)-fold integral, and the result follows.

One can take the gg(s) approximation different from f{s), as we
demonstrate by the following example.

Example 5. Solve the inhomogenecus Fredholm integral equation
of the second kind,

1
g(s) = 2s+,1f(s+:)g(:)d:, (13)

by the method of successive approximations to the third order.
For this equation, we take go{s) = 1. Then,

1
g() = 2s+,1[(s+s)a'x =25+ A(s+4),
1]

1
92() = 25 + A j G+0 {20+ AL+ (127} dt
[H]
=25 + A[s+@2/D] + A2 [s+(7/12)] ,
]
gi(s) = 25 + A f (S+8 2t + AL1+ QD] + A2[e+(7/12)]} dt
0

= 25 + AL+ 2/ + A2 [(7/6) s +(2/3)] + A2 [(13/12)s +(5/8)] .
(14
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From Example 2 of Section 2.2, we find the exact solution to be
g(s) = [122=A) s + 8AJ/(12—124— %), (15)

and the comparison of (14) and (15) is left to the reader.

3.3. VOLTERRA INTEGRAL EQUATION

The same iterative scheme is applicable to the Volterra integral
equation of the second kind. In fact, the formulas corresponding to
(3.1.13) and (3.1.25) are, respectively,

90) =f0) + 3 3" [ Kas 01 d M

g(s) = f15) + 2 [ Dis, ;D0 dt, @
where the iterated kernel K, (s, £) satisfies the recurrence formula
K50 = [ K, Koy (x,0dx 3)
#

with K| (s, £y = K(s, 1), as before. The resolvent kernel I'(s, ¢; 1) is given
by the same formula as (3.1.26), and it is an eatire function of 4 for any
given (s, t) (see Exercise 8).

We shall illustrate it by the following examples,

3.4. EXAMPLES

Example 1. Find the Neumann series for the solution of the integral
equation

g(s) = (1+5) + A [ s—D gD dr . (1
0
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From the formula (3.3.3), we have

Kl(sst) = (S_t) »

(s—1)*
37

K,(s5,0) = J(s—x)(x—t) dx =

¥

a3 s
K3(S,t)=J(S_x)(x 0 dx:(s £)

3 5t
z
and so on. Thus,

[l

A A S
9{5)=1+S+¢(2—!+§‘!)+A(E+§—I T+ (2)
For Ai=1, g(s)=¢"
Example 2. Solve the integral equation
g() = f5)+ 4 [ e gyt ®
1]
and evaluate the resolvant kernel.
For this case,
K (s,)=¢"",
Ky(s,1) = fe*-*e*-* dx = (s—Het,
¢
F _r a3
K;(s,0) = J(x—t)e“"e"“dx C 2,) e,
: !
(S—f)m_l _
K : — 5=t
(5 1) D
The resolvent kemnel is
i =1 N ‘lm_l(s_'{)m_l (A+1¥s—r1] ts s,
Cish)=1{ ¢ Z m—1r ¢ : 4
, ! t>s.

Hence, the solution is
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gis) = f(5) + 4 [ 4TI ity i (5)
Q
Example 3. Solve the Volterra equation
g(s) = 1+jsxg(:) dt . ©)
o

For this example, K, (s, £} = K(s, ) = st,
Ko(s.0) = fsxzzdx = (s*t — st%)3 ,

!

Ki(s,0) = f [sx)(x* e — xt*)/3] dx = (s7t — 2s* 1% + s47)/18

Ko (s, = j [(sx) (x7t — 2x*£* + xt7)/18] dx

= (5% — 35714 3% — s'0)/162,

and so on. Thus.

3 L] 9 12

s 5 5 £
s0=1+3+35 255 zsemi T @
3.5. SOME RESULTS ABOUT THE RESOLVENT KERNEL
The series for the resolvent kernel I'(s, ¢; 1),
P64 = 3 K69, H

m=1

can be proved to be absolutely and uniformly convergent for all values
of 5 and ¢ in the circle |4i] < 1/B. In addition to the assumptions of
Section 3.1, we need the additional inequality

j |K(s,0)|* ds < E*, E = const . 3
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Recall that this is one of the conditions for the kernel X to be an
%,-kernel. Applying the Schwarz inequality to the recurrence formula

K, (s,0) = j K, (s, X) K(x, 1) dx (3)
yields
K, D12 < ([ 1Ky (5,012 d) [ 1K e |2 dx
which, with the help of (3.1.19), becomes
|[Knis,0)| < CLEB" . 4

Thus, the series (1) is dominated by the geometric series with the general
term C, E(A*~ ' 8~1), and that completes the proof.
Next, we prove that the resolvent kernel satisfies the integral equation

T(s, 1) = K(s,0) + A f T (s, x; DK (x, 1) dx . 5)

This follows by replacing K,,(s,7) in the series (1} by the integral
relation (3). Then,

s, t;4) = K, (5,0} + i Am-i f K, (5, ) K(x, 1) dx
' m=2

K(s,0) + 4 i m-1 IKm(s,x) K(x, 1) dx
m=1

K(s,0) + Aj [ i VK (s, X)) K(x, ) dx
m=1

and the integral equation (5) follows immediately. The change of order
of integration and summation is legitimate in view of the uniform
convergence of the series involved.

Another interesting result for the resolvent kernel is that it satisfies
the integrodifferential equation

8T(s, 13 )82 = j I(s,x: )T (x,134) dx . (6)
Tn fact,
J- Iis,x; AT (x,t; )dx = jz ATVRL(5,x) Y AT R (x, D dx
m=I n=1
On account of the absolute and uniform convergence of the series (1),

we can multiply the series under the integral sigh and integrate it term
by term. Therefore,
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jr(s,x;,l)r{x,:;/l) dx=Y Y AR, L0 (7

m=1n=1
Now, set m+n=p and change the order of summation; there results
the relation

o

T Sk, 0= 3T K60
m=1 n=1

p=2 r=1i

e Py SR AL L
p=2
Combining (7) and (8), we have the result (6).

EXERCISES

1. Solve the following Fredholm integral équations by the method of
successive approximations;

(i) g(S)=¢—%e+%+%fg(r)dr.

2

(i) g(s) = (sins)— 45 + } j stg (0 dt .
1}
2, Consider the integral equation

L

g(s) = 1 +;Ljsrg(:) dr .

[H]
(a) Make use of the relation [i] < B7' to show that the iterative
procedure is valid for [1] < 3.
(b) Show that the iterative procedure leads formally to the solution
g(s) = 1 + s[(A/2) + (2*/6) + (A*18) + ---] .
. ro
(c) Use the method of the previous chapter to obtain the exact
solution

g() = 1+ [34s23-4)] ,

A#3.
3. Solve the integral equation

1
gls) =1 +Aj(s+r)g(r)dr,
Q
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by the method of successive approximations and show that the estimate
afforded by the relation A} < B™! is conservative in this case.

4, Find the resolvent kernel associated with the following kernels:
(i) |s—#|, in the interval (0, 1}; (ii) exp—|s—1|, in the interval (0,1);
(iii} cos{s+1), in the interval (0, 2x).

5. Solve the following Volterra integral equations by the method of
this chapter:

M ¢ =1+]G—ng@d,
Q

(i) gi(s) = 29 + 65+ f(65—6:+5)g(:) dr .
1]
6. Find an approximate solution of the integral equation

g(s) = (sinhs) + J. & fg(ndrt,
o

by the method of iteration.

7. Obtain the radius of convergence of the Neumann series when the
functions f(5) and the kernel K(s, £} are continuous in the interval (a, b).
8. Prove that the resolvent kernel for a Volterra integral equation of
the second kind is an entire function of A for any given (s, #).



CLASSICAL FREDHOLM CHAPTER 4
THEORY

41. THE METHOD OF SOLUTION OF FREDHOLM

In the previous chapter, we have derived the solution of the Fredholm
integral equation

9(5) = f5) + 4 | K(s,ng(v) )

as a uniformly convergent power series in the parameter 4 for | 4] suitably
small. Fredholm gave the solution of equation (1} in general form for
all values of the parameter A. His results are contained in three theorems
which bear his name. We have already studied them in Chapter 2 for
the special case when the kernel is separable. In this chapter, we shall
study equation (1) when the function f(s) and the kernel K(s,!) are
any integrable functions. Furthermore, the present method enables us
to get explicit formulas for the solution in terms of certajn determinants.
The method used by Fredholm cousists in viewing the integral
equation (1) as the limiting case of a system of linear algebraic equations.
This theory applies to two- or higher-dimensional integrals, although we
shall confine our discussion to only one-dimensional integrals in the
interval (4, b). Let us divide the interval (a, b) into n equal parts,

ss=ti=a, Ss=t=a+h, .., S =t,=a+{n—Dh,
a1
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where i = (b—a)/n. Thereby, we have the approximate formula
fK(s, ng)dt ~ hélK(s,sj)g(sj) . 2
Equation (1) then takes the form
96) = S + h Y Kis.1)g(5) ©

which must hold for all values of s in the interval {a, b). In particular,
this equation is satisfied at the » points of division s;, i=1,...,n. This
leads to the system of equations

g(s) = £ + Ah})é KGns)gG), i=Tlan. @
Writing
f(Si) :f; » g(si) =g, K(Sis Sj) = Kij L] (5)

equation (4) vields an approximation for the integral equation (1) in
terms of the system of » linear equations

gi"j.hz:‘Kugjzﬂ, f-:I,...,”, (6)
i=
in # unknown quantities g,, ..., g,. The values of g, obtained by solving

this algebraic system are approximate solutions of the integral equation
(1) at the points s,, 55,..., 5, We can plot these solutions g, as ordinates
and by interpolation draw a curve g(s) which we may expect to be an
approximation to the actual solution. With the help of this algebraic
system, we can also determine approximations for the eigenvalues of
the kernel.

The resclvent determinant of the algebraic system (6) is

]._llhKll _AhKlz o _AhKn'
—AhK,, 1-ARK,, - —ARK
Dn(j.) _ i 21 22 2n (?)
_AhKnl _M‘KHZ e 1 _:q.kK,m

The approximate eigenvalues are obtained by setting this determinant
equal to zero. We illustrate it by the following example.
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Example.

g(s) —Ajsin(s+t)g(r) dt =0,
4]

By taking n =3, we have # = r/3 and therefore
Sl=tl=09 52=t2=nf{3, S3=I3=2ft,'{3,

and the values of X; are readily calculated to give

0 0.866  0.866
(K,)=|0866 0866 0
0.866 0 —0.866

The homogeneous system corresponding to (6) will have a non-
trivial solution if the determinant

1 —09074  —0.9074
D,(A) =| —0.9074 (1-0.9074) 0O =0,
—09074 0 (1+0.9071)

or when 1—3(0.0907)*4* =0. The roots of this equation are i=
+0.6363. This gives a rather close agreement with the exact values (sce
Example 3, Section 3.2), which are +./2/x = £ 0.6366.

In general, the practical applications of this method are limited
because one has to take a rather large # to get a reasonable approxi-
mation. )

4.2, FREDHOLM'S FIRST THEQOREM
#

The solutions ¢, g5, ...,4, of the system of equations (4.1.6) are
obtained as ratios of certain determinants, with the determinant D, (1)
given by (4.1.7) as the denominator provided it does not vanish. Let us
expand the determinant (4.1.7) in powers of the quantity (—Ak). The
constant term is obviously equal to unity. The term containing (— %)
in the first power is the sum of all the determinants containing only one
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column —A#K,,, g=1,...,n Taking the contribution from all the
columns v = 1, ..., n, we find that the total contributionis — 41 3 ", K,,.

The factor containing the factor { — A%) to the second power is the sum
of all the determinants containing two columns with that factor. This
results in the determinants of the form

(_ A. h)l KPP KPG ,
K‘H‘ K‘Iq

where (p,q) ts an arbitrary pair of integers taken from the sequence
1,...,n, with p < g. In the same way, it follows that the term containing
the factor (—Ah)* is the sum of the determinants of the form

Kpp Kpg Kpr
(—an)? Kpp Koo Ko |
K, K, K,

where (p, ¢, r) is an arbitrary triplet of integers selected from the sequence
1,...n with p<g<r,

The remaining terms are obtained in a similar manner. Therefore, we
conclude that the required expansion of D, (1) is

. (—Ml)2 - KPP Km
D) = |—AhZK,,,+ - Z P
= pa=1 qp q
(—11;1)3 a KPP Kpﬂ Kp"
31 qu qu qu + -
par=t Krp qu -Krr
Kooo Kppz  Kpppe
(—A)" szm KPZP: szpn 1
k. ; .
’ PPy fe= 1 !
Koo Kpuma ' Koo

where we now stipulate that the sums are taken over all permutations
of pairs (p,q), triplets (p,q,7), etc. This convention explains the reason
for dividing each term of the above series by the corresponding number
of permutations.
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The analysis is simplified by introducing the following symbol for
the determinant formed by the values of the kernel at all points (s, 1;)

K(s1,1) Kisy, 1) - K{sp. 1)
K(sfs tl) K(SZ! IZ) K(sz’ tn) = K(slssh ...,S,,) , (2)
: tlsIZs-“!tn

K(S,,, rl) K(Sm tZ) K(Sm tn)
the so-called Fredholm determinant. We observe that, if any pair of
arguments in the upper or lower sequence is transposed, the value of
the determinant changes sign because the transposition of two arguments
in the upper sequence corresponds to the transposition of two rows of
the determinant and the transposition of two arguments in the lower

sequence corresponds to the transposition of two columns,
In this notation, the series (1) takes the form

. N (—AB)? < Sps S
D =1-—Aih K(s_, —_— K[
5 pzz] (559 + 2! Z Sps 5g

mg=1

(=i < Spr Sge 5,
Kl
+ 3! Z LI . + ()

par=1

If we now let # tend to infinity, then 4 will tend to zero, and each term
of the sum (3) tends to some single, double, triple integral, etc. There
results Fredholm’s first series:

- ,12 ,
D) =1- ij(s, ds+5; J K(Sl 52) ds, ds,

A3 51,5, 53
_ >S9z - 4
3!.[UK(51,32,33 ds, ds;dsy + 4

Hilbert gave a rigorous proof of the fact that the sequence D,(1)— D(4)
in the limit, while the convergence of the series (4) for all values of A
was proved by Fredholm on the basis that the kernel X (s, 1) is a bounded
and integrable function.' Thus, D(4) is an entire function of the complex
variable 4.

We are now ready to solve the Fredholm equation (4.1.1) and express

! For proof, see Lovitt [10].
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the solutions in the form of a quotient of two power series in the
parameter A, where the Fredholm function D(A) is to be the divisor.
In this connection, recall the relations {2.3.6) and {(2.3.7). Indeed, we
seek solutions of the form

() = 1) + A [ T(s 15010 dt, 5)
and expect the resolvent kernel T'(s, £, 1) to be the quotient
Fis,6;0) = D(s, ;) D(4) , (6)

where D(s, t; A), still to be determined, is the sum of certain functional
series.

Now, we have proved in Section 3.5 that the resolvent I' (s, 7; A) itself
satisfies a Fredholm integral equation of the second kind (3.5.5):

U{s, ) = Kis,t)+ 4 j K(s,x)T (x,1;2) dx . (D
From (6) and (7}, it follows that '
D@, 5 A) = K5, D{(Ay+ A f Kis,x) D(x,t; Ay dx . (8)

The form of the series (4) for D{A) suggests that we seek the solution of
equation () in the form of a power series in the parameter A:

DG, 11 4) = Cols, 1) + Z (—_;’;L—)f C,(5,1) . %)

For this purpose, write the numerical series (4) as

D@ =1+ > (;f“)p ¢ (10)
=1 '

NPT T TR
Cp:J"'JK( 1552 p)d51"'dsp' (11)
81532!""3;1

The next step is to substitute the series for D(s, ¢; ) and D{2) from (9)
and (10} in (8) and compare the coeflicients of equal powers of 4. The
following relations result:

CD(Ssr) = K(Ss I) ] (]2)
C,i5,0) = ¢, K(s,H) — p J’ K(s,x)C,_, (x, ) dx . (13)

Our contention is that we can write the function C,(s,#) in terms of
the Fredholm determinant (2) in the following way:

where
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Sy XsXgse0s X
=1.|K 4 .
C,(s0 J J. (r,xl,xz, ...,xp) dxy - dx, (14)
in fact, for p = 1, the relation (13) becomes
Ci(5,) =¢, K(s f) — J. K(s,x) Colx, 1) dx

K(s, t)J. Kix,x)dx — J- K(s,x)K(x, 0 gfx

=IKC'jdm (15)
t x

where we have used (11) and (12).
To prove that (14) holds for general p, we expand the determinant
under the integral sign in the relation:

K(s,t) K(s,x)) - K(s,x,)
K Sy Xy raas Xy . K(x,,f) K(xlsxl) e K(xl!xp)
LX1, e X)p B . ’
K(xp’ t) K(xpsxl) e K(xp! xp)

with respect to the elements of the given row, transposing in turn the

first column one place to the right, integrating both sides, and using the

definition of ¢, as in (11); the required result then follows by induction.
From (9), (12}, and (14) we derive Fredholm’s second series:

Dis,t;0) = K(s,5) + Z %J...j;{(&,xuw,x:’) dx,---dx,. (16)
p=1 )

1, X 15 ees Xy

This series also converges for all values of the parameter A. It is interesting
to observe the similarity between the series (4) and (16).

Having found both terms of the quotient (6), we have established the
existence of a solution to the integral equation (4.1.1) for a bounded and
integrable kernel K(s, 1), provided, of course, that D{1) # 0. Since both
terms of this quotient are entire functions of the parameter A, it follows
that the resolvent kernel I'(s,¢;1) is a meromorphic function of 4,
i.e,, an analytic function whose singularities may only be the poles,
which in the present case are zeros of the divisor D(A).

Next, we prove that the solution in the form obtained by Fredholm
is unique and is given by

06) =f) + 4 [T, .0/ () dr (7
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In this connection, we first observe that the integral equation (7) satisfied
by (s, t;4) is valid for all values of A for which D(2)# 0. Indeed,
(7 is known to hold for |i| < B7' from the analysis of Chapter 3,
and since both sides of this equation are now proved to be meromorphic,
the above contention follows. To prove the uniqueness of the solution,
let us suppose that g(s) is a solution of the equation (4.1.1) in the case
D(A) # 0. Multiply both sides of (4.1.1) by T'(s, ¢; ), integrate, and get

jr(s,x;z)g(x) dx = fr(s,x;;,)f(x) dx
+,1j U r(s,x;A)K(x,:)dx]g(:)dz. (18)

Substituting from (7) into left side of (18), this becomes

[ KGs,09(ydt = | Ts, %, 70x) dx (19)
which, when joined by (4.1.1), yields
9() =) + 4 [ Dt D f@) (20)

but this form is unique.
In particular, the solution of the homogeneous equation

() = A [ K(s,0)g (D) dt @n
is identically zero.
The above analysis leads to the following theorem.

Fredholm's First Theorem. Theinhomogeneous Fredholm equation

9() = /) + 4 [ K(s:n gy e, @
where the functions f(s) and g(#) are integrable, has a unique solution
gG) =fs)+4 _f Fis, ;)0 dr , (23)

where the resolvent kernel T'(s, ¢; 1),
[(s,2;4) = D(s,1; A}/ D4}, 24)

with D{A)+# 0, is a meromorphic function of the complex variable 4,
being the ratio of two entire functions defined by the series

Dis,t:4) = K(s,t)—i—z( A)PJ I (f: i"' . ")dxl “dx,, (25)
| EER)
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and

o (=AY
DY = 1+Z ¢ p!) I.[K(Ei;) de, - dx, (26)

p=I

both of which converge for all values of 1. In particular, the solution of
the homogeneous equation

9(s) = 2 [ Kis.0g() dt @7)
is identically zero.

4.3. EXAMPLES

Example 1. Evaluate the resolvent for the integral equation
1
g6y =) + 4 [ s+0)g(y . (1)
Q

The solution to this example is obtained by writing

o0

1 A
r(s,12 =[z(p1) Cp(s,r)}/z(%cp, ®

p=0

where C, and ¢, are defined by the relations (4.2.11) and (4.2.13):

=1, Cols, ) = K(5,0) = (s+1) . (3)

¢y = [ €purls9)ds, @
1

C, = ¢, K(s.0) = p | K(s,X)Cp 1 (x, el 5)
0

Thus,
]
€ =-J‘25ds =1,
0

1
C,(s,1) = (s+t)—f(s+x)(x+t) dx = Ys+t)—st— 1,
1}

¢ = f[(s~s?-pds = -3,
0
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Co(s, ) = =35+ —2 J GC+xIFx+0)—xt—P]dx =0,

Since C;(x,1) vanishes, it follows from (5) that the subsequent co-
efficients €, and ¢, also vanish. Therefore,

G+ -+ —st— 114

s, ;2 =
5,3 Ty ©
which agrees with result (2.2.8) found by a different method.
Example 2. Solve the integral equation
1
g(s) = s+ 4 j [st+(s0)%] g () dt . N
0

In this case,

=1, Co(s, 1) = st + (s0)%

Gy

1
J(sz+s) ds = §,
1]

1

C,(5,1) = §[st+(s0)4] — _|' [sx + (sx) %] [t + (x0)%] dit
4]

= dst + 3ot} — 3(st* +15%)
L

e = [ At +is—teh) ds = 1775,
o

CZ(sst) =0 .

and therefore all the subsequent coefficients vanish. The value of the
resolvent is

st+ (s0)% — {dst + L(s)% — 2 (st 452 1)}

r 1Ay = 8
(& 8:4) 1= 24+ (1/150) 22 ®
The solution g (s) then follows by using the relation (4.2.23),
1505 + A(60./5—755) + 21425
¢@) = (60ys 759 ©)

A*—1251 4 150

Example 3. As a final example, let us solve the integral equation
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g() = 1+ 4 [sin(s+nlg®ar , (10)
¢

which we have already solved in Section 3.2 by a Neumann series.
For the present kernel,

=1, Cols, ) = sin{s+1), € =jsin23ds=0.
o

C,(5,6) = 0— j sin(s+x)sin(x+#) dx = —tncos(s—1),
0

€y = —J.J;ncos{)ds = —in?,
1]

Cy(5,1) = —3n%sin(s+1 + 2 I msin{s+ x)cos(x—)dx = 0.
0

Hence, the resolvent is

sin{(s+£) + indcos(s—1)

r(S,I;A) = 1 — -&Kzlz »

and the solution is

2A(coss) + AZn(sins)
1 — §n? 42 ’

which agrees with the solution (3.2.10).

gis)=1+ (11)

4.4, FREDHOLM'S SECOND THEOREM

Fredholm’s first theorem does not hold when 1 is a root of the
equation D(A)=0. We have found in Chapter 2 that, for a separable
kernel, the homogeneous equation

() = 4 [ K(s,0g() dt (1)

has nontrivial solutions. It might be expected that same holds when the
kernet is an arbitrary integrable function and we shall then have a
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spectrum of eigenvalues and corresponding eigenfunctions. The second
theorem of Fredholm is devoted to the study of this problem.

We first prove that every zero of D (1) is a pole of the resolvent kernel
(4.2.24); the order of this pole is at most equal to the order of the zero
of D(A). In fact, differentiate the Fredholm’s first series (4.2.26) and
interchange the indices of the variables of integration to get

D)= — j D(s,s;4) ds . 2)

From this relation, it follows that, if 4, is a zero of order k of D(4),
then it is a zero of order k—1 of D'(1) and consequently 4, may be a
zero of order at most £ —1 of the entire function D(s,#;4). Thus, A,
is the pole of the quotient {4.2.24) of order at most k. In particular,
if A, is a simple zero of D(4), then D{4;)=0, D'(1,)#0, and i, is
a simple pole of the resolvent kernel. Moreover, it follows from (2) that
D(s,t;1)#£0. For this particular case, we observe from equation
(4.1.8) that, if D(1) =0and D(s,t;2) #0, then D(s,¢;2), as a function
of s, is a solution of the homogeneous equation (1). So is eD(s, £; 1),
where « is an arbitrary constant.

Let us now consider the general case when A is a zero of an arbitrary
multiplicity m, that is, when

D{igy=0, ..., DU)=0, D™U)=0, ()

where the superscript r stands for the differential of order r, r=1,
.... m—1. For this case, the analysis is simplified if one defines a
determinant known as the Fredholm minor:

Sy Fayeney 8y
D"(rl 12 s ;')
1382y 1vun by
i P
- K(SlsSZs--'ssn)_}-z{_;‘)
t19t2s“"tn p=1 p'

EITRTIIS. o S TRRIPAS 3 .

X.I‘”.J‘K(Il, coes by X1, ...,xp) dx dxy ++- dx, 4
where {5} and {1}, i=1,2,...,n are two sequences of arbitrary
variables. Just as do the Fredholm series (4.2.25) and (4.2.26), the series
(4) also converges for all values of A and cousequently is an entire

function of i. Furthermore, by differentiating the series (4.2.26) n times
and comparing it with the series (4), there follows the relation
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d" D{A) u Spyeans Sy
i =1 jj D”(s,,...,sn A)dsimds"- ®

From this relation, we conclude that, if 4, is a zero of multiplicity m
of the function D{1), then the following holds for the Fredholm minor
of order m for that value of 1;:

;,o) #£0.

D, (s,,sz, vory Sy
Hotayoeomy b
Of course, there might exist minors of order lower than m which also do
not identically vanish (compare the discussion in Section 2.3).
Let us find the relation among the minors that corresponds to the
resolvent formula (4.2.7). Expansion of the determinant under the
integral sign in (4),

K(sl!tl) K(slst2) K(shtn) K(Slaxl) K(slsxp)
Kis2, 1) K(s3,83) - K(s,8) Klsp,x) - K(5,x,)
KGnt) KGnts) — K@nt) KGwx) — K@nx) | ©
K(xh{l) K(xht2) o K(xlstn) K(xllx‘l) . K(xt!xp)
KGent) K@ity o KGint) KGonx) o K(ix)

by elements of the first row and integrating p times with respect to
X|s Xz 0 X, fOr p 2 |, we have

J'K, sl’""S"’xl’m’x‘_’)dxi---dxp
t].s"'s'rmxls“'sxp
N
= > (— K1)
k=1
Ssvues Spyees Sy Xisoees X
XJIK( 2s 1] ] [ i P) dx,dx;---dxp
tla'“srh*-lsrll+1=-“9tn!x1s--'9xp
.

+ g:l (—1)rtot

Say oen S Xjr Xay oy Xpy oy X
x| .- K(Sl,x*) K( ER ] LIRS 2 ’ p)
[STRYPH tn-—]'!tmx]a---sxh—i!xk+ls '“sxp

X dxy-dx,. (7
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Note that the symbols for the determinant K on the right side of (7) do
not contain the variables s, in the upper sequence and the variables ¢,
or x, in the lower sequence. Furthermore, it follows by transposing the
variable s, in the upper sequence to the first place by means of A4+n—2
transpositions that all the components of the second sum on the right
side are equal. Therefore, we can write (7) as

K sls“'ssmxls“-s-rp
ti,...,tn,xi,...,xp
= Z ("l)HlK(snfn)
=1
XJ\_HJ‘K(‘S‘ZN-W Sn!xis-",xp)dxl“.dxp
tl,...,tﬁ_i,th.‘.l,...,ln,xi,...,xp
X, 83y <y Sy Xpsanes Xy
"PJK(Sl,x)U---IK( 2 K 1s s Xp 1)
ti’rz’---!tmxis-“axp—l
x dx, --—dqu1i| dx &)

where we have omitted the subscript 2 from x. Substituting (8) in (7),
we find that Fredholm minor satisfies the integral equation

Flaveay &y - At Sy ere 2 Sy
D i) = — M K (s, 4) D,
"(ri! vras By ) Z ( ) ( : h) l('[19 Tery tﬁ—ivlh+l,tn)

h=1

+ AjK{s,,x) D,.(f’x”“”s"

12828 20ms rn

,1) dx . )

Expansion by the elements of any other row leads to a similar identity,
with x placed at the corresponding place. If we expand the determinant
(6) with respect to the first column and proceed as above, we get the
integral equation

CIERIRTE M < ht+1 SisveraSh— 13 Sh+1s 01 Fn
D i} = — UK (s, 1) D, -
"(r.,...,r,, ) ;( R ) ‘(12,... ,r,,)

+AJK(x,t.)D,, ‘;‘ ’S")dx, (10)

LY 3'{25 Ty rn

and a similar result would follow if we were to expand by any other
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column. The formulas (9) and {10) will play the role of the Fredholm
series of the previous section.

Note that the relations (9) and (10) hold for all values of A. With the
help of {9), we can find the solution of the homogeneous equation (1) for
the special case when 4 =4, is an eigenvalue. To this end, let us suppose
that 1= A, is a zero of multiplicity m of the function D{1). Then, as
remarked earlier, the minor D, does not identically vanish and even the
minors D,, D5, ..., D,,_, may not identically vanish. Let D, be the
first minor in the sequence D,, D,,...,D,_, that does not vanish
identically. The number r lies between 1 and m and is the index of the
eigenvalue 4, as defined in Section 2.3. Moreover, this means that
D,_, = 0. But then the integral equation (9) implies that

30) (11)
&

is a solution of the homogeneous equation {1). Substituting s at different
points of the upper sequence in the minor D,, we obtain r nontrivial
solutions g,(s), i=1,...,r, of the homogeneous equation. These
solutions are usually written as

D,.(SI’ e S 18y Sia 1 -0 Sr
L]
,10)

ty .. 1
Dr(sls---ssi—lsshsi+1s“"!Sr
fisoen Wl
Observe that we have already established that the denominator is
not zero.

The solutions ¢; as given by (12) are linearly independent for the
[ollowing reason. In the determinant (6) above, if we put two of the
nrguments s; equal, this amounts to putting two rows equal, and
consequently the determinant vanishes. Thus, in (12), we see that
O, (5) =0 for i # k, whereas ®,(5,) = 1. Now, if there exists a relation
3. C =0, we may put s=s, and it follows that C;=0; and this
proves the linear independence of these solutions. This system of
solutions @, is called the fundamental system of the eigenfunctions
of 4; and any linear combination of these functions gives a solution
of (1).

Conversely, we can show that any solution of equation (1) must be

. PR

=D
gl(s) r(t[,---, t,.

D,(s) =

i=12,..,r.(2)
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a linear combination of @, (s), ®,(s),..., O, (s). We need to define a
kernel H(s,t;4) which corresponds to the resolvent kernel I'(s, #; 1) of

the previous section
\ Sy enn§
"’0 Dr ' ¢
tl! eey fr

In (10), take n to be equal to r, and add extra arguments s and ¢ to

obtain

Sy Sy ey
Dr+l( '
+ Z(—l)”K(S;,,y) Dr(sssls PP L TR ERPE 1
h=1 g

R P T
H(Sst;“') = Dr+] ot T
I!‘svrls---s'tr

,10) .3)

Ao) = K(s,?) D,(s"""s'

VR

[ S
1s'{2!-'- ,fr

. : . ST
+%Jxmoaﬂ( ety
x,1

] 19"-’lr

:

lo) dx . ’ (14)

In every minor D, in the above equation, we transpose the variable s
from the first place to the place between the variables s, and s5,,,
and divide both sides by the constant

S1seansd,
Dr( ! ' ’10) ‘-}é 0 3
Tisinly

H(s,t;4) — K(s,1) — 4, jH(s,x;i)K(x, t) dx

to obtain

=—§Fmﬁgm. (15)

If g(s) is any solution to (1), we multiply (15) by g{r) and integrate
with respect to ¢,

Ig(r)H(s,t;l) dt-%@—jg(x)r(s,x;l) dx
- _Z gf") @, (5) . (16)
a=1 0

where we have used (1) in all terms but the first; we have also taken
Ao _[ K{s,, Dg(r)dt = g(s;). Cancelling the equal terms, we have
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ORI WILACY an

This proves our assertion. Thus we have established the following result.

Fredholm’s Second Theorem, If ; is a zero of multiplicity m
of the function D(4), then the homogeneous equation

g(s) = Ao j K(s,)g(® dt (18)

possesses at least one, and at most m, linearly independent solutions

AU )
13 e s by

i=1,..,r; l€rsm (19

A TRETTY TS PY MY NI PRI,

gt(s) = Dr(t

not identically zero. Any other solution of this equation is a linear
combination of these solutions.

4.5. FREDHOLM'S THIRD THEOREM

In the analysis of Fredholm’s first theorem, it has been shown that
the inhomogeneous equation

g{(s) =f(S)+/1_fK(s,!)g(t) d (N

possesses a unigue solution provided D(1)# 0. Fredholm’s second
theorem is concerned with the study of the homogeneous equation

g6y = A [ K(s,ng () dt

when D{1)=0. In this section, we investigate the possibility of (1)
having a solution when D(4) = 0. The analysis of this section is not
much different from the corresponding analysis for separable kernels as
given in Section 2.3. In fact, the only difference is that we shall now give
un explicit formula for the solution. Qualitatively, the discussion is the
same.

Recall that the transpose (or adjoint} of equation (1) is (under the
same assumption as in Section 2.,3)
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b

W) = )+ 4 [ K@y @y ar @

It is clear that Fredholm’s first series D(4) as given by (4.1.26) is the
same for the transposed equation, while the second series is D(¢,5; 1)
as obtained from (4.1.25) by interchanging the roles of s and ¢. This
means that the kernels of equation (1) and its transpose (2) have the
same eigenvalues. Furthermore, the resolvent kernel for (2) is

F(t,5;4) = D(1,s;0)/D() , (3)
and therefore the solution of (2) is
g(s) = f{s) + 4 J LD s; DS dr G

provided A is not an eigenvalue.

It is also clear that not only has the transposed kernel the same eigen-
values as the original kernel, but also the index r of each of the eigenvalues
is equal. Moreover, corresponding to equation (4.4.12), the eigen-
functions of the transposed equation for an eigenvalue for 1, are given as

D Sls--- QSr l)
0
! rls---sri—lststi-i'l’-'-s '{r

p (S 5| )
1]
’ T himnn b bfir o0 e

where the values (s,,...,5,.) and (t,,...,t) are so chosen that the
denominator does not vanish. Substituting # in different places in the
lower sequence of this formula, we obtain a linearly independent system
of r eigenfunctions. Also recall that each ®; is orthogonal to each
¥; with different eigenvalues.

If a solution g(s) of (1) exists, then multiply (1) by each member
W.(s) of the above-mentioned system of functions and integrate to
obtain

J,f(s)‘i’k(s) ds j g() ¥, (s) ds ~ A j j K(s, D g ()W (5) dsdi .
[e@ dsr¥) -1 [ Kewdl =0,

¥ =

(6)

where the term in the bracket vanishes because W, (s) is an eigenfunction
of the transposed equation. From {6), we see that a necessary condition
for (1) to have a solution is that the inhomogeneous term f{s) be
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orthogonal to ¢ach solution of the transposed homogeneous equation.

Conversely, we shall show that the condition (6) of orthogonality is
sufficient for the existence of a solution. Indeed, we shall present an
explicit solution in that case. With this purpose, we again appeal to the
resolvent function H(s, #; 1) as defined by (4.4.13) under the assumption
that D, # 0 and that r is the index of the eigenvalue 1i,.

Our contention is that if the orthogonality condition is satisfied,
then the function

go(s) = f5) + o [ HUs,t;/(0) de )
is a solution. Indeed, substitute this value for g(s) in (1), obtaining
A8+ 4o [ His, 5000 dt = () + 4o | K(s,1)

x [F(5) + Aq j H(t,x; ) f(x) dx] dt
or

ff(r) di[H(s, 1,0y — K(5,8) — A J‘ Ks,xH(x,5; )dx} =0. (8)
Now, just as we obtained equation (4.4.15), we can ohtasn its “transpose,”™
His,t;2) — K(5,1) — A(; f Kis,x)H(x,t; ) dx

- -hzrl K(s, )Y, (1) . ®

Substituting this in (8) and using the orthogonality condition, we have
an identity, and thereby the assertion is proved.

The difference of any two solutions of (1) is a solution of the
homogeneous equation. Hence, the most general solution of (1) is

06 = f9)+ o [ H60/0 di+ T C0,). (10)

The above analysis leads to the following theorem.

Fredholm’s Third Theoram. For an inhomogeneous equation

9(9) = f() + %o | Kis.0g (1) dt, (an

to possess a solution in the case D{2,) =0, it is necessary and sufficient
thut the given function f{s) be orthogonal to all the eigenfunctions
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w.(5), i=1,2,...,v, of the transposed homogeneous equation corre-
sponding to the eigenvalue Ay, The general solution has the form

g(s) = £(s) +ADJ‘[DrH(s,sl,s:,...,s, io):l/Dr(jhsz""’j' ﬂo)
TRTTIY ¢

Lty oo i
xf@ydt + 3 Co0y(s) . (12)
A=l

EXERCISES

1. Use the method of this chapter and find the resolvent kernels for the
following three integral equations:

® g6 =S +[ls~flg®dr,
@ g() =)+ [ (exp—ls~t) g dr,
0

2x
(iiy gl =f51+4 J. [cos(s+ ] g dt .
[+]
2. Solve the follpwing homogeneous equations

M g =34 [sinG+Dlg® dr,
o

@ g = [ [ 2290 dr,
a

by using the explicit formulas of this chapter.
3. Show by the present method that the resolvent kernel for the integral
equation with kernel K{(s,#) = 1 —3s¢, in the interval (0, 1), is

UG, 150) = [4@ =D + 4 =3+ — 30 =Dst], A#+2.

4. Show that not every one of the Fredholm’s minors as defined by
(4.4.4) is identically zero.
Hint: Use (4.4.5).



APPLICATIONS TO ORDINARY CHAPTER 5
DIFFERENTIAL EQUATIONS

The theories of ordinary and partial differential equations are fruitful
sources of integral equations. In the quest for the representation formula
for the solution of a linear differential equation in such a manner so as
to include the boundary condition or initial condition explicitly, one is
always led to an integral equation. Once a boundary value or an initial
value problem has been formulated in terms of an integral equation, it
becomes possible 1o solve this problem easily. In this chapter, we shall
consider only ordinary differential equations. The next chapter is
devoted to partial differential equations.

6.1. INITIAL VALUE PROBLEMS

There is a fundamental relationship between Volterra integral
equations and ordinary differential equations with prescribed initial
values. We begin our discussion by studying the simple initial value
problem

V'+ AS)Y + B(s)y = Fls), (1)
61
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ay=¢qo, yi@=gq, 2

where a prime implies differentiation with respect to s, and the functions
A, B, and F are defined and continuous in the closed interval a < s < 5.

The result of integrating the differential equation (1) from « to s
and using the initial values (2) is

V() —g; = —A@)y(s) ~ J. [B(s)) — A" ()] y(s,) ds,

k3

+ [ Fsy) ds, + 4@ -

@

Similarly, a second integration yields

V) =go = = [ AG)y() ds ~ [ [ [BG) =4 ()] p(s,) ds, ds,

£ 5

+ [[ Fs) ds, ds, + [4@q0 + 0115 -0) 3

With the help of the identity (see Appendix, Section A.1)

5 52 g

” F(s,) ds, dsy = j(s—:)F(r) dt , 4

the two double integrails in (3) can be converted to single integrals.
Hence, the relation (3) takes the form

) = g0 + [4@q, +0:1(5—-a) + [ ((—) F() dt

— [ 140 + 6-D[BGO) - £ Oy dr . ®)

Now, set
K{s,f) = —{A() + -D[B(n - A (O]} {6)

and

£ = [-0F@dt+ [4@gq +q.16-a +q. D
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From relations (5)7), we have the Volterra integral equation of the
second kind:

) =f6) + [ K, 0yt . ®)

Conversely, any solution g(s) of the integral equation (8) is, as can
be verified by two differentiations, a solution of the initial value problem
(D~(2).

Note that the crucial step is the use of the identity (4). Since we have
proved the corresponding identity for an arbitrary integer n in the
Appendix, Section A.l, it follows that the above process of converting
an initial value problem to a Volterra integral equation is applicable to a
linear ordinary differential equation of order # when there are » pre-
scribed initial conditions. An alternative approach is somewhat simpler
for proving the above-mentioned equivalence for a general differential
equation. Indeed, let us consider the linear differential equation of
order n:

d"y dn—l y

_+A1(S)F + -

d
= A DD+ Ay = PO, )

with the initial conditions

@ =4, VY@=¢. ... ¥ U@=¢-, (10
where the functions A4, A,, ..., 4, and F are defined and continuous
inags<h

The reduction of the initial value problem (9)-(10) to the Volterra
integral equation is accomplished by introducing an unknown function
g(s):

d'ylds" = g(s) . (11)

From (10) and (11), it follows that

£

ddsn—(.ly) = jg(t) dt +qu—1 ]
i (12)
2y (continued)
Pt f(swf)g(f) dt + (5 —@Gp v + G2 »

q
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£

_ap-2 a2 o an—3
gfg_j(s LU (o) S o)

ds B (n—2)! (n_Z)l (n_s)! G-z
+o -9 +4q0,
; (12)
_ [ I
= e n g0 de + Y q,,“l-rwqﬂ_2

+oo 4 (5=a)gy + o0 -

Now, if we multiply relations (11) and (12) by 1, 4,(s), 4,(s), etc. and
add, we find that the initial value problem defined by (9)-(10) is reduced
to the Volterra integral equation of the second kind

g = 1) + [ Kis,ng(n d, (13)
where ’
B < (s—F!
K(s,1) = }Z A (14)
and

S = F(s) — g1 A1 05) ~ [5—@) g,y + §,—2] 42(9)
— = {[—a" (=D G-y + - +{s—a)q1 + g0}
x A.(5). (15)

Conversely, if we solve the integral equation (13) and substitute the
value obtained for g (5) in the last equation of the system {12), we derive
the (unique) solution of the initial value problem (9)-{10}.

5.2. BOUNDARY VALUE PROBLEMS

Just as initial value problems in ordinary differential equations lead
to Volterra-type integral equations, boundary value problems in



£.2. BOUNDARY VALUE PROBLEMS 65

ordinary differential equations lead to Fredholm-type integral equations.
Let us illustrate this equivalence by the problem

V(S + Ay + B(s)y = F(s), (1)
y@=y,, y®=y. 2)
When we integrate equation (1) from & to s and use the boundary

condition y{a) = ¥4, we get

Y@ = C+ [ Fs)ds — AG)y(s) + A@)¥o

+ [[4() — B y(s) ds

where C is a constant of integration.
A second integration similarly yields

& Fy

Y = 3o = [C+ A@yol(s—a) + [ [ Fls,) ds, ds,

LEH

— [ AG)ye) s+ [{ T4 G) - Bl)1p(s) dsyds, . 3)

Using the identity (5.1.4), the relation (3) becomes

-3

Y = yo = [C+ A@yl6—a) + [ =N F() dr

- _f {A(0) = s—H[A() — B(OL y(D) dt . (4)

The constant € can be evaluated by setting s = 5 in (4) and using the
second boundary condition y(b) =y, :

1= ¥o = [C+ A@yo}(b—a) + [ G— F() dt
~ [ {40 = @-0[4'®) - BOD YO a1,

or
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C + 4@y, = (-1 —y0) - [ (=) F@) at

+_[ {A@ - @G- [4 @O — BBy dr} .

From (4} and (5), we have the relation
y($} = yo + I (s—DF@dt + [s—a)/(b—a)]
x [(1—yo) = [ b= F(t) ]

- f {A(® - —nl4'() — BOBy() dt

+ I [(s-a/d-a)]{4@) — ¢-D[A() - BOBy(@) dt .

Equation (6) can be written as the Fredholm integral equation

¥ =16+ [ Ks oy a,

provided we set
1 = yo + [ s=0F(p) de

+ [6—a/b—-d1 L —vo) - [ G0 F(r) dr)

and
[G—a)f(b—a)]{4(t) - G-—9[4'() - B(1]},
s <t,
AN {{—af(b—a)] -1} - [4°(1) - B(1)}]
x[(t-a)(b—-s)/b-a)F, s>1¢.

K(s, 1) =

(%)

(6

(7

®)

®

For the special case when 4 and B are constants, a=0, b= 1, and

¥(0) = ¥(1) =0, the above kernel simplifies to

Bs(l—1 + 4s, §<t,

K(s,0) =
( {Bt(l—s)+As—A, s> t.

(10)

Note that the kernel {10) is asymmetric and discontinuous at ¢ =§,

unless 4 = 0. We shall elaborate on this point in Section 5.4.
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5.3. EXAMPLES

Example 1. Reduce the initial value problem
Y'(s)+ Ay(s) = F(s), )
y@=1, Yy©®=0, (2)

to a Volterra integral equation.
Comparing (1) and (2) with the notation of Section 5.1, we have
A(s) =0, B(s) = A. Therefore, the relations (5.1.6)5.1.8) become

K(s,6) = A(t—3s),

S® =1+ [e-nF@dr, 3
Q
and

&) =1+ f(s—r)F(r) dt+).f(t—s)y(t) dr .

Example 2. Reduce the boundary value problem
Y'(s)+ AP(5)y = Q@) , 4
y@=0, y@=0 (5)

to a Fredholm integral equation.

Comparing (4) and (5) with the notation of Section 5.2, we have
A=0, B=AP(s), F(s}= Q(s), y,=0, y, =0. Substitution of these
values in the relations (5.2.8) and (5.2.9) yields

1@ = [-DQWdi—[s-ay(b-a] [ G-nQ@d  (©

and
{mn -0 (b-/(b-a)), s<t,
K(s,8) =
AP [(t—a)(b—s)/(b—a)], s>,
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which, when put in (5.2.7), gives the required integral equation. Note
that the kernel is continuous at 5= &

As a special case of the above example, let us take the boundary value
problem

Y+iy=0, ®)
y@ =0, y¢)=0. &)

Then, the relations (6) and (7) take the simple forms: f(s) = 0, and

(10)

A.S - 3 L]
Ko - I( ¢ -1, s<t

(AL — ), -
Note that, although the kernels (7) and (10) are continuous at s =1,

their derivatives are not continuous. For example, the derivative of the
kernel (10) is

Alt=@e, s<t,

0K (s.nfos = { — ML, s> t.

The value of the jump of this derivative at s=1¢ is

dK(s, ) K 0)  _
ds t+ 0 B ds t—0 -

Similarly, the value of the jump of the derivative of the kernel (7) at

=tis
dK(s, 1) dK(s, 1) _
i NSl e

Example 3. Transverse oscillations af a homogeneous elastic bar.
Consider a homogeneous elastic bar with linear mass density 4. Its
axis coincides with the segment {0, /) of the s axis when the bar is in its
state of rest. 1t is clamped at the end s =0, free at the end s=¢, and is
forced to perform simple harmonic oscillations with period 2n/w. The
problem, illustrated in Figure 5.1, is to find the deflection y(s) that is
parallel to the y axis and satisfies the system of equations
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—
= yis!
¥
Figure 5.1
dty wtd
— — = 0 4 —
y@ =y () =0, (12)
y{)y=y"(¢y=10, . (13)

where ET is the bending rigidity of the bar.

The differential equation (11} with the initial conditions (12) can be
reduced to the solution of a Volterra integral equation if we stipulate
that :

YO =G, y0=C0G, (14)

and subsequently determine the constants C, and C; with the help of (13).
Indeed, when we compare the initial value problem embodied in (L1},
([2), and (14) with the system (5.1.9)}5.1.15), we obtain the required
integral equation

52 5? js—ﬁ
Q(S)=k“(5~1C2+§C3)+k“.[( 31) g(t)dt, (]5)
o

where
gis) = d* ylds* . (16)
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The solution y(s) of the differential equation (1) is

S2

5 G2 (7

. A 3
»{8) =J‘(L3T)— g(Hdt +§-! Cy+
o

We leave it to the reader to apply the conditions (13), determine the
constants £, and C,, and thereby complete the transformation of the
system (11){13) into an integral equation.

The kernel of the integral equation (15) is that of convolution type
and this equation can be readily solved by Laplace transform methods
as explained in Chapter ¢ (see Exercise 11 at the end of that chapter).

5.4, DIRAC DELTA FUNCTION

In physical problems, one often encounters idealized concepts such
as a unijt force acting at a point s = 5, only, or an impulsive force acting
at time ¢ = ¢, only. These forces are described by the Dirac delta function
d(s—sg) or (¢ —1;) such that

0, X ¥ Xg»
d(x—xo) = ‘ (1)

00, x=xD,

where x stands for s in the case of a unit force and for ¢ in the case of an
impulsive force. Also,
0 it xg isnotin- (a,b),

fé(x-xo) dx = { 2

1 if xp isin (a,b).

This function is supposed to have the sifting property
[ 3x—x0) 6 dx = b(x0) K

for every continuous function ¢{x).
The Dirac delta function has been successfully used in the description
of concentrated forces in solid and fluid mechanics, point masses in the
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theory of gravitational potential, point charges in electrostatics, im-
pulsive forces in acoustics, and various similar phenomena in other
branches of physics and mechanics. In spite of the fact that scientists
have used this function with success, the language of classical math-
ematics is inadequate to justify such a function. It is usually visualized
as a limit of piecewise continuous functions f(x) such as

Q, 0 x<x5—3e,
f(x) = P Fx_xOF £ %89 (4)
g, o+ <x</{,

or as a limit of a sequence of suitable functions such as

k, 0<ix| < 1k,

Sulx) = { )

0, for all other x,

where k=1,2,3,..., and

sinkx

Ju(x) = (6}

1
T X
Our aim in this and the next chapter is to determine integral repre-
sentation formulas for the solutions of lincar ordinary and partial
differential equations in such a manner so as to include the boundary
conditions explicitly. To accomplish this task, we have to solve
differential equations whose inhomogeneous term is a concentrated
source. This is best done by introducing the theory of distributions,
but that is not on our agenda. We shall, therefore, content ourselves
with the above-mentioned properties of the delta function. Furthermore,
we shall need the Heaviside function H(x):

HE) 0, x <0 (
1, x>0
and the relation

dH(x)/dx = 6(x) . #)
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65.5. GREEN'S FUNCTION APPROACH

We shall consider the initial and boundary value problems of Sections
5.1 and 5.2 in a different context. Let L be the differential operator

d* d

Lu(s) = [A@) 55+ BE) 7 + COu(s), a<s<b, (1)

where A(s) is continucusly diflerentiable, positive function. Its adjoint
operator M is defined as

Mo(s) =2 [46)o(0)]

- ‘—% [Byv(s ]+ C)o(s), a<s<bh, 2

It follows by integration by parts that
f (vLu—uMv) ds = [A@d —w’) + u(B— 4] . 3)

This is known as Green’s formula for the operator L.
It is traditionally proved in the theory of ordinary differential equations
that the relation

A(S)Y" + B(s)y' + C(s)y = ®(s) (4)
can be converted to the form
d dy
- [p(S) Es] +q(s)y = F(s), &)

which is clearly self-adjoint. The function p{s) is again continuously
differentiable and positive and ¢(s) and F(s) are continuous in a given
interval {a, b). Green’s formula (3) for this operator takes the simple
form

J. (vLu—ulv) ds = [p(s) (e’ —w" . (6)

The homogeneous second-order equation

df dy
ag(pzq)Jrqy—O )
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has exactly two linearly independent solutions u(s) and #(s) which
are twice continuously differentiable in the interval a <5< b. Any
other solution of this equation is a linear combination of u() and »(s),
i.e., y(s)= ¢, u(s)+ ¢y v(s), where ¢, and ¢, are constants.

initial Value Problems

Let us first consider the initial value problem

d{ d
ES-(p j‘é) +gqy = F(s), %
y@=0, yi@=0. )

To formulate this problem into an integral equation, we consider the
function

w(s) = u(s) f o(f) F() dt — u(s)fu(r) F@)dt, (10)

where u and v are solutions of the homogeneoaus equation (7) as men-
tioned above. The relation (10), when differentiated, gives

w(s) = #'(5) j 2 () F(f) dt — v’ (5) f w() F(t) dt

"+ u(s) v () F(s) — u(s) v(s) F(s)

i

0 j 2(1) Ft) dt - v’ (5) J' () F(£) dt

Hence, w(g)=w'(a) =0, and
d dw d du J
ot I:P (%) E:’ =7 [P(S) E]f”(f) F(t) dt

- E (S)d_v
ds| PV ds (equation continued)
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k3

x Ju(f) F(0) dt + p(s}[#' () v(s) — o' () u(s)] F(s)

o

= —~g(O)w(s) + pO [ (5}o(s) — V' (DuH]F(s), (A1)

where we have used the fact that u(s) and v(s) satisfy the equation (7).
In addition [dropping the argument (s} for p,u,v],

gg{p(u’v—v'u)} = %(pu’)v—d—i(pv')u—i-pu'v' —p'u' =0,

also because # and v satisfy (7). This means that
PO o(s) — v (u)] = 4, ' (12)

where A is a constant. The negative of the expression in the brackets in
the above relation is called the Wronskian W{u, v; 5) of the solutions u
and v:

W, v;5) = u(s)v'(5) — v(s)e'(s) . (13)

From the relations (11) and (12), it follows that the function w as
given by (10) satisfies the system

d{ dw
EE(PE) +qw = AF(s), (14)
w(a) =0, wi{g)=0. (15)

Dividing (14) by the constant 4 and comparing it with (5), we derive
the required relation y(s) as

y©) = [ Re&NFO dr (16)
where )
R(5,0) = (1/4) {(u(s) () — o()u()} - (17)

Note that R(s, 1) = — R(t, ).
Tt is easily verified that, for a fixed value of ¢, the function R(s,1) is
completely characterized as the solution of the initial value problem

d dR
LR = E[p(s)a} +g(a)R = 6(s—1),
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dR
ds

1
= PO
This function describes the influence on the value of y at s due to a

concentrated disturbance at ¢« It is called the influence function. The
function G(s;1),

Rl =0, (18)

{0, s<t,
G(s;0) = (19)

R(s, 1), 8>t
is called the causal Green’s function.
Example. Consider the initial value problem
YV+y=FF, O<s<l, yO=yOm=0. (20
The influence function R(s, ¢) is the solution of the system

d*R dR
dsz + R :6{5—")’ Rlszt =03 E;

=1. @1

g=1

The required value of R, clearly, is R(s,#) =sin{s—{), and the integral
representation formula for the instial value problem (20) is

5

y(s) = f sin(s—£) F(t) dt . 22)
4]

When the values of y(a) and y'(a) are prescribed to be other than
zero, then we simply add a suitable solution ¢, u+¢,v of (7) to the
integral equation (16) and evaluate the constants ¢, and ¢, by the
prescribed conditions. For example,

Y+y=Fg, y®O=1, »yO0=-1 (23)

has the solution

&

P{s) = j [sin(s— ] F(2) dt + ¢, (sin s) + ¢, (coss) . (24)

a

With the help of the prescribed conditions, we find that ¢) =—1 and
(o= l.
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Boundary Value Problems

Let us now consider the boundary value problems and start with the
simplest one,

d{ dy _
%(pd_s)wy_,v(s), a<s<b, (25)
y@=0, yb)=0. (26)

We attempt to write its general solution as an integral equation of
the form

3(s) = j R(s, ) F(t) dt + ¢, u(s) + ¢, 0(s), (27)
where #(5) and »(s) are the solutions of the homogeneous equation (7).
When we substitute the conditions (26} in (27), we obtain
cyu(@) + cav(a) =0,
e u(d) + 0 (b) = — J‘ R(b,HF(D dt,

which will determine a unique pair of constants ¢, and ¢, provided the
following holds for the determinant D

D =ul@vd) —v(@ulh) £ 0 ; (28)

for the time being, we assume this to be true. Therefore,

e, = [p(@)/D] j R(b, 1) F(?) dt

5 b
[v(a)/ D] f R{(b, 1) F(2) dt + [p(a)/ D) f R(b, D) F(Q) dt (29)

4

—[u(@/D] | RGN F() di

§ b
~[u(a) D] f R(b, ) F(f) dt — [u(a)/D]J' RBOF@Nyd.  (30)

Putting these values of ¢, and ¢ in the relation (27), we have the solution
y(5) as
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¥ = [ (R(s,0 + (1 D) [p(@) u(s) — u(@ v(&I RO, D} F()

b
+ _[ (/DY[v(@u(s) — u(@ov(HIRG,HFH dt . (1)
Using (12) and (17) and doing some algebraic manipulation, we
find that
R(s.0) + {[v(@u(s) — u(@) v(s))/ D} R(b, 1)
= ({{AD)[u(@v(®) — v(@u(®)] [u()v(d) —v(s)u(B)] . (32)
Finally, we define the function G(s;#):
(1/AD) [u(s) p(a) — (s} (@] (1) v(b) — v(Hu(b)],
§<t,

Gis;:H) = (33)
(1{AD) [u(t)v{a} — v(yu(@] [u(s)v(d) — v(Hu(d)],

s >1.

Then the solution y(s) as given by (31) takes the elegant form
) = — [ Gls;nyF(oy dr . (34)

The function G(s;7) is called the Green’s function. It is clearly
symmetric:

_ "G =Gt . (35)

Furthermore, it satisfies, for all ¢, the following auxiliary problem:

d dG
LG = Z;[p(s)ﬂ +a)G = —5G6—1),  (36)

G|s=a = G[x=b =0, (37)

Glyatso — Gly=—0 = 0, (38)
dG dG 1

o - = T 39

ds w0 d5|i-0 r() (39)

where by G‘|,_,+o we mean the limit of G(s;¢) as s approaches ¢ from
the right, and there are similar meanings for the other expressions. Thus,
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the condition (38) implies that the Green’s function is continuous at
§=t. Similarly, the condition (39) states that dG/ds has a jump dis-
continuity of magnitude — {1/p(#)} at s=1¢ The conditions (38) and
(39) are called the matching conditions.

It is instructive to note that the relation (39) is a consequence of
the relations (35) and (36). Indeed, the value of the jump in the derivative
of G(s,#) can be obtained by integrating (36) over small interval
{t—e&,s) and by recalling that the indefinite integral of d(s—1¢) is the
Heaviside function H{s—f). The result is
s Jq(x)G{x;t) dx = p(t—g) CU=89)
ds ds

=t

(0 H{s—1).

When s traverses the source point £, then on the right side the Heaviside
function has a unit jump discontinuity. Since other terms are continuous
functions of s, it follows that dG/ds has, at ¢, a jump discontinuity as
given by (39).

Example. Consider the boundary value problem
Y =F(), y@=y(¢)=0. (40)
Comparing this system with the relations (25), (26), and (36)-(39),

we readily evaluate the Green’s function:

iOE-1, s<t,
Gis;H) = @an
HOHE—sy, s>t
which is the kernel (5.3.10) except for the factor A. The solution of (40)
now follows by substituting this value in the equation (34). Incidentally,
by introducing the notation

£, s< ¢, )
§. = © or min(s, £,
t, 52t
and
t, s,
5. = ofr max{s,{),
5, sz,

the relation (41) takes the compact form
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G(s:0) = WO (—5.)1, 0<st<. (42)

It follows from the properties (36)-(39) of the Green’s function
G (s;£) that 3G (s; o)/t satisfies the system of equations

d d {0G(s;a) G (s; a) _
::'EI:p(S)Zs{ }]+q{s)*——0, a<s<bh,

ot ot

0G(a;a) 1 aG(b;a)

i kA AL -0. 4
ot pia’ ot 0 (43)

Similarly, 0G (s; b)/ét satisfies the system
d [psﬂ {66{5;!})}] + g{s) 0G(sib) =0, a<s<b,

ds| T as) ot ot
oG (a; by G (b)) 1
a 0 o pd)’ “4)
Hence, the boundary value problem
(Y +ey=F, y@=a, ypd)=245 (45)
has the solution
y(s) = —JG(S;I)F(I) dt
G (s aG(s. b
+ap(@ 2D gy T, (46)

as is easily verified.
Finally, we present the integral-equation formulation for the boundary
value problem with more general and inhomogeneous end conditions:

(Y +qv = F(s),
—my@+viy@=a, wy@+vyd=§. @0

When we proceed to solve this system in the same way as we did the
system (1)-(2), the Green’s function for the present case can also be
derived provided the determinant

D =[—pw(@) + viu@] [u v (b) + v20(b)]
—[-uv' @+ vi0@] L o' (B) + v, u(B)] # 0.
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Indeed, G(s;{) possesses the following properties:

d dG
LG = Eg[p(s)a:l—kq(s)(}‘ = —d(s—1)

dG dG
—H Eg s +v Glsza = U g - + V?.G1s=b =0.
Glx=r+0 - G|s=:—0 =0,
dG dG 1
— - — = ——, 43
7 P e “5)

and the condition of symmetry. With the help of the Green’s function,
the boundary value problem (47) has the unique solution
y(E = —J‘ G(s; D F(t)ydr +'E(—a) G (s a) + E(-'{,—))!‘Ft'}(s; b)Y, (49
#y Hi
provided &, and g, do not vanish. If 4, = 0, then the factor (1/¢,)G(s; a)
is replaced by (1/v,)0G(s;a){dt. By the same token, if u, =10, we
replace (1/u,)G(s;b) by —(l/vy)0G (s;5)/dt. In view of the relation
D # 0, we cannot have both g, and v, or both u, and v, equal to zero.
When o and f§ are zero, the relation (49) reduces to (34).
The Sturm-Liouville problem consists in solving a differential equation
of the form

(Y)Y +qy + Adry = F(s) (50)

involving a parameter A and subject to a pair of homogeneous boundary
conditions

— Y@+ viy@ =0, wy@®+v,yE)=0. (51

The values of A for which this problem has a nontrivial solution are
called the eigenvalues. The corresponding solutions are the eigen-
functions. In case p(a) = p(5), the boundary conditions (51) are replaced
by the periodic boundary conditions

ya@=y®, y@=ypo.

From formula (49), it follows that the solution of equation (50) subiect
to the conditions (51) is
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y(s) = Afr(x)G(s;:)y(:) dt — j G(s; ) F(t) dt (52)

which is a Fredholm integral equation of the second kind. In this
equation, G(s; f) r (¢} is not symmetric unless the function r is a constant,
However, by setting

(1% y(s) = Y(s),

under the assumption that r{5) is nonnegative over the interval {(a, b),
the equation (52) takes the form

y($)[r ()% = 4 j Gis; D1 r(01%“ LrN]% p(n) dt

. . v, FL)
—J.G(s,t)[r(S)]’s[r(t)]” (1% dat,
or
F(t)
Y(s) = Af("i(s HY(6)dt — jG(s t)[ ()],& (53)

where G(s; ) = G(5; (] % [#(H]% is a symmetric kernel.

The above discussion on boundary value problems is based on the
assumption that D = u(@)v(b) —v(a@)u(h) does not vanish. If it
vanishes, then the homogeneous equations

c;ula) + cyv(ay =0, c;ud)+ce(f) =0
have a nontrivial solution {¢,,¢,), and the function w(s) = ¢, u(s) +
¢'; v(5) satisfies the completely homogeneous system
(pw'Y +—qw =0, wia) = w(b) = 0. (54)

Therefore, if y is a solution of (25), (45), or (47), then so is y+cw for
any constant ¢. This means these systems do not have a unique solution,
This is not all. There is an additional consistency condition which must
be satisfied for these systems to have a solution. Take, for example, the
system (45). Multiply the differential equation (45) by w and integrate
{rom a to b and get

[w@F© ds = [ w) oyy + a1 ds
= [wpy' = w'py ki + [ yI(pwY +qw)] ds
= p@w(@x—p&)w ®)B . (3)
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Therefore, if (45) is to have a solution, then the given function F{x)
must satisfy the consistency condition (55). For « =§ =0, we get the
consistency condition

f wis) Fis)ds = 0, (56)

for the system (25). Thus, if D is zero, then we either have no solution
or many solutions; but never just one.

5.6. EXAMPLES

Example 1. Reduce the boundary value problem
yV'+iy=0, N
yO =0, YM+vyl)=1, 2

to a Fredholm integral equation,
From the properties (48); and (48),, we must have

A (Os, 5s<t,
G(s;0) =
Az (0 [ + v, (1—-9)], 5>t
The consequence of the symmetry of the Green’s function is
A =C[1+v,(1-8], A, =Ct,

where C is a constant independent of £. The jump condition (48), yields

Ct(—v)—Cll + vy (1=-9) = -1
or
C=1/14+vy.
Thus, the Green’s function is completely determined:
[1+v,(—8]s/(A+vy), s<t,
Ges;1) = i ’ 3)
[L+va(1—5)}e/(0+vy), s>t

The required integral equation is
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L+ v(-9)
y = 2t J:y(:)dt
1]

1

+ 4 [T+ v (1—0]y(D dt + . )]
1+ ¥y ; Vi
Example 2. Reduce the Bessel equation
d’y  dy
¢ e 2_ _
e +Sds+(ls Dy=20 )]
with end conditions
yo=0, y(1)=0, (6)

to a Fredholm integral equation.
The differential equation (5) can be written as

(Y +(=1/9) +4s]y = 0. N
Comparing (7) with (5.5.50), we obtain
p=s, gq&=-1s, rle=s5, F(=0.

Tofind the Green’s function, we observe that the two linearly independent
solutions of the equation

T AT T
are s and 1/s. Therefore, from (5.5.36)-(5.5.39), it follows that
s200-, s<t,
G = | 0T @
¢25(1—s>, s>¢.

Substituting this value of G in the relation (5.5.52), we get the required
Fredholm integral equation.

Example 3. Reduce the following boundary value problem to a
Fredholm integral equation:

Yi+dsy=1, y®=0, yH=1. )
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The Green's function is the same as given by (5.5.41):
(s/ YL -0, s<t,
S lynHe -9, s>,

The expression for the integral equation then follows from (5.5.46):

G(s; D [§}]
2 £

y(s) = -fG(s;r) dt + Afc(s;s)ry(:) di — 8G(s; 00t . (1)
o ]

The function &G (s;£)/0¢ satisfies the system of equations (5.5.44),
which for the present case become

whose solution is
G (5,0)ot = —s/f . (13)
Substituting (10) and (13) in (11), we have
yis) = (s/£) - Jf(thf)(f—s) dt — f{sff)(f—r) dt
( b 5
+4 j G(s; 1) ty(2) dt
or ’
y(&) = $RO[2—£* 45T+ A _f Gs; )ty dr . (14)
¢

57 GREEN'S FUNCTION FOR NTH-ORDER ORDINARY
DIFFERENTIAL EQUATION

The boundary value problem consisting of a differential equation of
order n and prescribed end conditions can also be transformed to a
Fredholm integral equation in the manner of Section 5.5, For instance,
take the boundary value problem
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d? d? d d
;;{x(s)g;f} + é{p(s);i} + @y~ r©y = Fs), (1)

where 1 is a parameter and the boundary conditions are

(xy"Y +py' =0, or y prescribed, 2
(
xp' =0, or ¥y prescribed .
The Green’s function G(s;¢) for the problem (1)-(2) is such that
it satisfies the differential equation

d?. dzy d dy _
Q?{x(s)gg} + %{p(S) d_s} = d(s—1), (3)

together with the prescribed homogeneous boundary conditions. In
addition, G, 8G/ds, and 8*G/ds® are continuous at s = ¢. The value of
the jump in the third derivative of G is

3G G

633 §=i+0 633

1

s=r=0 - E '

(4)

Finally, G is symmetric.
In terms of the Green’s function with the above five properties, the
boundary value problem (1)-(2) reduces to the integral equation

y(s) = ;ch;(s, Hy(e) dt — j G(s, 1) F(1) dr . 5
Example. Consider the boundary value problem
d4
=3+ ly = —f0), ©)
y0O) =0=py©, yI)=0=y(1). (N
The homogeneous equation
d*yjds* = 0,

has the four linearly independent solutions 1, s, s2, s°. Therefore, we take
the value of G(s;¢) to be

A+ A, (Ds+ 4,057 + 43058, s <t,
G(S;f) = (8)
Bo(t) + B, (D)s + By(0)s® + By(0)s?, s> 1.
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The boundary conditions at the end points give
Ap(D =0, A=0, B, = —3B,—28,, By, =2B,+8B,.
Thus, the relation (8) becomes

A (D)5F + Ay s, 5 <,

G(s; ) = {
(1 =5 [Bo($){1 +25) + B, 5], s> 1.

The remaining constants are determined by applying the matching
conditions at 5 = #, which result in the simultaneous equations
A+ 2 A, —(1-324+2)B, —t(1-1? B, =0,
A4, + 32 A; + 6t(1—1)By — (1 -4t +3t3)B, = 0,
24, + 6tA; + 6(1 =20 By + 2(2—=30 B, =0,
64, — 12B, — 6B, = | ,
whose solution is
A0 = —41(1-0%, A, =3(1-0Q+1),
By(t) =31, B ()= —47.
Hence,

21— (2st+5-31), s<t,

G i = 9
9 {%t2(1—5)2(23£+t—3s), s> 1. @

The required Fredholm integral equation then follows by substituting
this value in the relation (5).

5.8. MODIFHED GREEN'S FUNCTION

We observed at the end of the Section 5.5 that, if the homogeneous
equation Ly =0, where L is the self-adjoint operator as defined in
equation (5.5.5), with prescribed end conditions, has a noutrivial
solution w(s), then the corresponding inhomogeneous equation either
has no solution or many solutions, depending on the consistency
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condition. This means that the Green’s function, as defined in Section
5.5, does not exist, because

J.é(s—t)w(s)ds‘aéO, a<t<h. (1)

A method of constructing the Green’s function for this type of
problem is now presented. Such a function is called the modified Green’s
function and we shall denote it by Gy(s;). We start by choosing a
normalized solution of the completely homogeneous system so that
[ w?(s) ds = 1. The modified Green’s function is to satisfy the following
properties.

(a) Gy, satisfies the differential equation
LGu(s;0) = 8(s—1) —w()w() . 2)

This amounts to introducing an additional source density so that the
consistency condition is satisfied. Indeed,

j [8(s—1) — w(s)w(®O]w(s) ds = 0 .

(b) G\, satisfies the prescribed homogeneous end conditions,
(¢) Gy is continuous at s =1{,
(d) Gy satisfies

4Gy
ds

4Gy

=—— 3
t+0 ds @

t—0 p(’

Thus, the construction is similar to that for the ordinary Green’s
function except that the modified Green’s function is not uniquely
determined ; we can add cw(s) to it without violating any of the above
four properties. It is often convenient to choose a particular modified
Green’s function that is a symmetric function of s and ¢. This is
uccomplished by defining two functions G,{s;¢,} and Gy(s; ;) which
sutisfy the equations

LGy(s;t)) = 8(s—t) —w(tyw(s), 4
LGy(s;15) = 8(s—t) —w(t) w(s), (5)

ulong with prescribed (same for both) homogeneous end conditions.
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Multiply (4) by Gy (s:£,) and (5) by G\ (s:¢,), subtract, and integrate
from a to b. Finally, use the Green’s formula (5.5.6) and get

Gultr38) — Gultz; 1) + w(t)) [ Gulsi ) wis) ds

— w(t,) j Gyls;t)wis)ds = 0. (6)

Now, if we impose the condition:
(e) G\, satisfies the property

[ outsinwids =0, G

then it follows from (6) that &y, will be symmetric. Thereby, the Green’s
function is uniquely defined.
Finally, we can reduce the inhomogeneous equation

Ly = F(s) (8)

with prescribed homogeneous end conditions into an intepral equation
when the consistency condition | F(s) w(s}ds = 0, is satisfied. Indeed, by
following the usual procedure, one gets

J (GuLy—yLGy ds = [ Gu(s: D) F(sy ds — y()
+ J' P ws)wie) ds . 9

But the left side is zero because of the Green’s formula (5.5.6) and the
end conditions. Thus, we are left with the relation

¥ = [ Guls3 0 F() ds + Cw() (10)

where C = [y(s)w(s)ds, is a constant, although as yet undetermined.
By interchanging s and ¢ in (10), we have

v(g) = J- Gy(t;8) F() dt + Cw(s) . (1)
For a symmetric Green's function, the above result becomes
y(s) = J- Gu(s; ) F() dt + Cw(s) . (i2)

When w(s) =0, this reduces to the relation (5.5.34) [note that G in
(5.5.34) is negative of the Gy in (12)].
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5.9. EXAMPLES

Exampla 1. Transform the boundary value problem

2

—(%+1J’)=F(S), Yo =y¢)=0, 0<s<gs (13)
into an integral equation.

The self-adjoint operator —d?y/ds? =0, 0 <5< £, with the end
conditions y'(0) = ' (#) =0 has the nontrivial solution y =const. We
take it to be 1/£% because [§(1//)ds = 1. We therefore have to solve
the system

d? Gpy(s; ) 1 4G{0;0)  dG{; 0
B ek e e e

0. (14)

The solution of the system (14) for s < ¢ that satisfies the end condition
at s=0 is A+ (5%/2¢). Similarly, the solution that satisfies the end
condition at 5 = ¢ is B—s+(5%/2/). Hence,

A+ (s220) s<t,

Gyls; f) =
wlsi o) [B—s+(sz,.r’2{), s> 1.

The condition of continuity at s=¢ implies that B= A +¢, while the
jump condition on dG,,/ds is automatically satisfied. Thus,

A+ (5328, s<t,

G ;~=
Mls30) {A+t—s+(szf2¢’), s> 1.

The constant 4 is determined by the symmetry condition (7):

. . ¢ .
il s Vs —
J(A+2f)ds+f(/l+r *H'gg) s = 0
!

1/¢> ¢
- %+l
4 ;(3+2 )

Thereby, the symmetric Green’s function is completely determined:

or
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', .
Guis;?) =-§+%(§2+£2)_{ §<t 5

s, s>,

The expression for the integral equation follows from the formula
(5.8.12),

4 ¢ £
Y = =2 [ Gu(s; )y dt + [Gu(si D F&) ds + 1J0) [ sy ds. (16)
d ) 0
Example 2. Transform the boundary value problem
d iy )
Zq{(l—s )3}—%2): =0, y(—1, y(1) finite (7
into an integral equation.
The operator —(d/ds)[(1—s*)dy/ds] is a self-adjoint Legendre

operator. The function w(s) = 1//2 satisfies this operator as well as
the boundary conditions. Hence, we have to solve the equation

d 240ul _ o
For s # t, we have
2 %m _$
(1—5%) 7 3 + 4
or
Wy s A
s 2(1—s5Y)  1-s5?
or
Gy = —} {log[(1 +5)(1 - 91}
+3A{log[(1+8)/(1—9)} + B. (19
Thus,
(34 —-log(l +5) — A+ log(l—9) + B,
§<t,
Gu(s:0) = (20)

GC-Plog(l+s) — 3C+Dlog(l-s)+ D,
§F>1.
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Since Gy(s;#) has to be finite at —1 and +1, we must take 4 =1,
C = — 4, and the relation (20) reduces to

~4log(l—s5)+ B, §<t,
Gu(s; ) = 21
s ) { —dlog{l+5)+ D, s> 1. @D

The continuity of Gy at s = ¢ implies that
B8~ D=—%log(1+5 ++log{l—1). (22)

The jump condition at s=1¢ is automatically satisfied. Finally, the
symmetry of &, vields

-1

1 ! 1
0= jGM(s;:) ds = j[B— $log(1 —9)] ds+j[D — }log(l +5)] ds
~ I ]
or
B+ D =2(og2)—1—{log(t +#) + log(l —1)] . 23
From (22) and (23), we obtain the values of 8and D as
B=(log2)—%—4log(l+1), D =(log2)—1—1log(l—-t).(24)

Putting these values in (21), we have

tlog[(1-5(1+5]), s< 1,
Gu(s;) = (log2) — 1 — 25
(30 = (log2) ~ 4 {%log[(l-i-s)(l—t)] s s> t. =

The required integral equation now follows by using the formula
(5.8.12). )

EXERCISES

Transform the fol]owing boundary value problems to integral
equations:

1. y'+y=0, ¥y(0) =0, yin=1.
2, y+sy=1, y(0) =py(1)=0.
3 Y+y=y, YOy =y({1y=0.
4 y'+y=y, y®»=1, »y{)=0.
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5. Y+ + A%y =0, yO=yp1)=0.
6. y—-y=f9, yO=y(1)=0.
7. Reduce the differential equation

Y+ P -ty =0,

# a known positive constant, with the end conditions y{0) =0, (3'/y) =
— i at § =5,, into a Fredholm integral equation.

8. Convert the initial value problem
Y+isty=0, Y0 =0=y@0
into a Volterra integral equation.

9. Find the boundary value problem that is equivalent to the integral
equation

1
y(s) = AJ.(I — |s—t)y(n) dt.
=1

10. (a) Show that the Green’s function for the Bessel operator of
order n
Ly = (djds)(sdyjds) — (n*/s)y,  n#0

with the end conditions .
y(0) = y(1) =0
is
apmysieq-2m,  s<t,
Gis; 1) = 5
(12n) (1 -5, s>t
(b)  Use the result of part {a} to reduce the problem
'Y+ + (P =r?)y =0, p(O) =y(1) =0
to an integral equation.

11. Reduce the boundary value problem

d? d?
o {(4+s)3 3;1’} —Ma+s)y =0,
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yy=0=y(M, y'0)=0=y"(1)
to a Fredholm integral equation.

12. Extend the theory of Section 5.8 to the case when the completely
homogeneous system has two linearly independent solutions w, (s) and

wa (5).
13. Find the modified Green's function for the systems
yi—dy=0, pO =y, yO=y(Q0
14, Transform the boundary value problem
YV+y=19, y0)=ym=0,

into an integral equation.

Hint: The self-adjoint operator —{y"+p)=0 has the nontrivial
solution (2/m)"sins and it satisfies the boundary conditions. Now
proceed as in the examples in Section 5.9.



APPLICATIONS TO PARTIAL CHAPTER 6
DIFFERENTIAL EQUATIONS

6.1. INTRODUCTION

The applications of integral equations are not restricted to ordinary
differential equations. In fact, the most important applications of
integral equations arise in finding the solutions of boundary value
problems in the theory of partial differential equations of the second
order. The boundary value problems for equations of elliptic type can
be reduced to Fredholm integral equations, while the study of parabolic
and hyperbolic differential equations leads to Volterra integral equations.
We shall confine our attention to the linear partial differential equations
of the elliptic type, specifically, to the Laplace, Poisson, and Helmholtz
equations, wherein lie the most interesting and important achievements
of the theory of integral equations.

Three types of boundary conditions arise in the study of elliptic
partial differential equations. The first type is the Dirichlet condition.
In this case, we prescribe the value of the solution on the boundary. The
second type is the Neumann condition. In this case, we prescribe the
normal derivative of the solution on the boundary. When we prescribe
the Dirichlet conditions on some parts and the Neumann conditions on
other parts of the boundary, we have a mixed boundary value problem.

94
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The divergence theorem and the two Green’s identities will be used
repeatedly in this chapter. They are as follows:

Divergence theorem:

[divaar = [ A-nds; 1)
R 5
Green's first identity:
3
juV’vdV= —f{gradu-gradv)dV+jua—vdS; @)
H
R _ R s

Green's second identity:

2
j(uvzv—szu)dV=J(ua—fz—ug—:)dS, 3)
R 5

where A is a continuously differentiable vector field and the functions u
and r have partial derivatives of the second order which are continuous
in the bounded region R; § is the boundary of R, while n stands for
the unit normal outward to S. The surface S is a smooth (or regular)
surface as defined by Kellog [9]. The differential operator V2 is the
Laplacian, which in Cartesian coordinates x,, x,, x; has the form

ot 8 &

Vie —+—+—;.
dx, 2 ax,? * ax;?

@

Any solution u of the equation V2u = 0 is called a harmonic function.

To keep the chapter to a manageable size, we shall confine ourselves
mainly to three-dimensional problems. The results can be readily
extended to two-dimensional problems once the technique is grasped.
Boldface letters such as x shall signify the triplet (x,,x;,x3). The
quantities R; and R, will stand for the regions interior and exterior to 5,
respectively. Furthermore, we shall not follow the commeon practice of
writing dS; or dS; to signify that integration is with respect to the
variable x or &. We shall merely write 45 and it shall be clear from the
context as to what the variable of integration is.

We shall be interested in giving the integral-equation formulation
mainly to the differential equations V?u =0, the Laplace equation;



96 6/ PARTIAL DIFFERENTIAL EQUATIONS

V2y = —dnp, the Poisson equation; and (V2 +4%)u = 0, the Helmholtz
(or the steady-state wave) equation. Here, p(x) is a given function of
position and k is a given number.

6.2. INTEGRAL REPRESENTATION FORMULAS FOR THE
SOLUTIONS OF THE LAPLACE AND POISSON EQUATIONS

Our starting point is the fundamental solution {or free-space solution)
E(x; E) which satisfies
—V2E = 8(x—E) (N

and vanishes at infinity. This function can be interpreted as the electro-
static potential at an arbitrary field point x due to a unit charge at the
source point E. Such a potential is given as

E(x;E) = 1/d4nr = 1)4n|x-§| . (2)

For the two-dimensional case, the corresponding formula is
(1/2m)1log(1/r) = {1/2n}log(1/|x — &), where x = (x, x;) and & =({,&,).
The fundamental solution can be used to obtain the solution of the

Poisson equation
—Viy =dnp. 3

Indeed, multiply (1) by u{x), (3) by E(x; £), subtract, integrate over the
region R;, and use Green’s second identity as well as the sifting property
of the delta function. The result is (after relabeling x and &)

_[p I d {1 L | du
ulx) = j r v 4::_[ on (r) @3 +4nj;6n as. “)
s s

R

Suppose that from some previous considerations we know the values of
g, 4, and dujon which appear in the formula (4):

uls =1, dulonls=o0; )

then this formula becomes

u(P) =f§dV_4infr(Q)%(})ds+ Zl:_:_[a(rg) as, (6)
R & 5
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where P is the field point x and @ is a point £ on S. The formulas (4)
and (6) lead 10 many interesting properties of the harmonic functions.
For details, the reader should refer to the appropriate texts [4, 9, 19].
We shall merely note the properties of the three integrals which cccur
on the right side of (6).

The Newtonian, Single-Layer, and Double-Layer Potentials

The integral _fR (p/r) dV is called the volume potential or Newtonian
potential with volume density p. Similarly, the integral {c(o/r) dS is
the simple or single-layer potential with charge (or source) density o,
while the integral [s7(8/dn)(1/r) dS is the double-layer potential with
dipole density =. These integrals arise in all the fields of potential theory.
However, we have used the language of electrostatics, as it interprets
them nicely. These potentials have the following properties.

For the Newtonian potential u = [ (p/r) dV, we have the following:

(1) V2u=0, for points P in R,.

(2) For points P within R,, the integral is improper but it converges
and admits two differentials under the integral sign if the function p is
sufficiently smooth; the resuit is V2u = —4mp(P).

The single-layer potential u = [{(o/r) dS has the following properties:

(1) Viu=0, outside S.

(2) The integral becomes improper at the surface S but converges
uniformly if S is regular. Moreover, this integral remains continuous as
we pass through 5.

(3) Consider the derivative of u taken in the direction of a line
normal to the surface S in the outward direction from S. Then,

du cos{x—§,n)
EP‘-.'P+ =_2EG(P)+IJ(Q)WdS (?)
&
and
du cos(x—&,m)
a—n . = 2?'50'(10) =+ IO‘(Q)—[;‘“:E'[Z— ds N (8)

5
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where P and P, signify that we appreoach § from R; and R,, respec-
tively, and where both x and & are on §. From (7) and (8), we
obtain the jump of the normal derivative of ¥ across §:

;- 1/0u 5

" 4n\ én B ©

Similarly, the double-layer potential w = [57(/0n)(1/r) dS, has the
following properties:

ou
P on

(1) V2u =0 outside of S.

(2) The integral becomes improper at the surface but it converges
if the surface S is regular.

(3) The integral undergoes a discontinuity when passing through §
such that

ulp, = 2n2(P) +ft(Q)M ds (10)
Ix—&|
&
and
cos(x—E,n) s (11)

ulp. = —2r7(P) +J"r( }
e 9w
s
in the notation of the relations (7) and (8). Hence, thejurﬁp of u across
Sis
t = (1fam}[ulp, —ulp_ ] . (12)

(4) The normal derivative remains continuous as S is crossed. The
reader who is interested in the proof should look up the elegant proof
given by Stakgold [19].

Interior and Exterior Dirichlet Problems

For the solution of a boundary value problem for an elliptic equation,
we cannot prescribe i and du7n arbitrarily on S, Therefore, equation (6)
does not allow us to construct a solution for equation (3) such that u
shall itself have arbitrary values on S and also arbitrary values for its



6.2. SOLUTIONS OF LAPLACE AND POISSON EQUATIONS 99

normal derivative there. As such, there are two kinds of boundary value
problems for elliptic equations. For one kind, we have the value of the
solution prescribed on S—the so-called Dirichlet problem. For the
second kind, the value of the normal derivative of the solution is
prescribed on S-—-the Neumann problem. We discuss the Dirichlet
problem first.

To fix the ideas, let us discuss the Dirichlet problem for the region
exterior to the unit sphere. In order to get a uniqu'e solution, it is
necessary to impose some sort of boundary condition at infinity along
with the boundary value on the surface § of the sphere. Indeed, the
functions &, {x) =1 and u,{x) = 1/r are both harmonic in the region
R, and assume the same value 1 on S. But if we require that the solution
vanishes at infinity, then u, is the required solution. As a matter of fact,
it is an important result in the potential theory [9, 19] that, when one
solves the Dirichlet problem for the exterior of the unit sphere (by
expansions in spherical harmonics) such that the potential vanishes at
infinity, then one finds that the behavior of the solution is

1 Ju 1
u|m = O(;) , E" . = 0(;2) . (13)

From these considerations and from the value of the fundamental
solution, it is traditionally proved that

lim E@— u(jg-; dS =10 (14)
or ar

on the surface § of the sphere of radius r.

We can now define and analyze the exterior and interior Dirichlet
problems for an arbitrary surface S as follows.

Definition. The exterior Dirichlet problem is the boundary value
problem

Viu, =0, xeR,; wls =1,

1 ou, 1 (15
de=o() 5 -oa)

where f{x) is 2 given continuous function on §.
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Definition. The interior Dirichlet problem is the boundary value
problem
Vi =0, xeR, uls=/. (16)

Suppose that we are required to find the solution of the interior
Dirichlet problem. We assume that such a solution # is the potential
of a double layer with density t {which is as yet unknown):

24,(%) =F@5‘E§1@d& a7
5

For u; to satisfy the boundary condition (16), from within .5, we appeal
to the relation {11) and get the Fredholm integral equation of the second
kind for T(P):

Py = —(12r)/(P) +_fK(P, DA ds, (1%)
&

where the kernel K(P, Q) is
K(P, Q) = [cos(x—§,m)]/2n |x—§]*, (19)

and P (=x) and @ (=E) are both on §. We solve the integral equation
(18) for 7, substitute this solution in (17), and obtain the required
solution of the boundary value problem (16).

In exactly the same way, the Dirichlet problem for an external domain
bounded internally by S can be reduced to the solution of a Fredholm
integral equation of the second kind.

We can present an integral-equation formulation of the exterior and
intetior boundary value problems (15) and (16) in a composite medium
when f(x) is the same function in both these problems. Recall that the
fundamental solution £{x; E) satisfics the relation

—V2E = §(x—8), forall x and E&. {(20)

Multiply (16) by E, (20) by u;, add, integrate and apply Green’s second
identity. This results in

I(Ea_".i _ui‘z‘_?)ds _ {ui@’ Sk, (21)
n on 0, EcR,,

5
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where n is the outward normal to R; on §.

The corresponding result for the exterior region is obtained by
multiplying (15) by E, (20) by u,., adding, integrating over the region
bounded internally by S and externally by a sphere S,, and applying
Green's second identity. The contribution from S, vanishes as »#— oo
in view of the boundary condition at infinity, and we finally have

du JE 0, EeR,
gt —}ds = 22
K 6n+“°ﬁn) {ue(&), teR,, @
Y

where we have used the fact that the outward normal to R, on Sis in the
—n direction.

The next step is to add (21) and (22) and observe that both %; and ,
take the same value f as we approach the surface. Thus, we obtain

3ui 3uc _ ui(g) 3 ge Ri »
IE(X; E‘)("é’? B 5n) ®= {ue@), EcR., ®)

5

and xe.5. Let us make use of the relations (2) and (9}, and relabel x
and &; thereby, we end up with the relation

o (&) s = u(x), XER,,
Ix ~&|

5

24
u.(x), xeR., 9

that is, a single-layer potential with unknown charge density o. Finally,
using the boundary condition

“iis = z“eis =7

in (24), we obtain the Fredholm integral equation of the first kind
£ = [ [o®)/Ix—E1ds, (25)
Y
with both x and § on §.

Interior and Exterior Neumann Problems

In this case we are required to find the solution of Laplace or Poisson
equation when the normal derivative is prescribed.
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Definition. The exterior Neumann problem is the boundary value
problem

du,

Vig = —
) 0, xeR,, .

=f, #|a=0. (26
5

Definition. The interior Neumann problem is the boundary value
problem

du,

Vi =0, xeR, —
an

=f. 27

s

For a Neumann problem, the prescribed function f(x) satisfies the
consistency condition

[r@as=0. ges, (28)

which follows by integrating the identity
J(V’u;)dV: 0,
R;

and using the divergence theorem.

The exterior and interior Neumann problems can be reduced to
integral equations in a manner similar to the one explained for the
corresponding Dirichlet problem. Indeed, we seek a solution of the
interior Neumann problem in the form of the potential of a simple layer

u, = [ [o(Q)r] ds, (29)
5

which is a harmonic function in R;. Tt will be a solution of (27) if the
density # is so chosen that

duy

=f(P), PeS. (30)
an

P-
Appealing to the relation (8}, we have

d
Sy = —

; cos(§ —x,n)
. on

lr,2

ds. (31

P-

= 2na(P) + J a()

5
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Thus, o(P) is a solution of the Fredholm integral equation of the
second kind

cos(E—x, n)

6(P) = 5= f(P) —j o() G 4o (32)

&

2nr

The solution of the exterior Neumann problem also leads to a similar
integral equation. Furthermore, we can give the integral-equation
formulation of the problems (26} and (27) in a composite medium when
J'is the same function in both these problems. Proceeding as we did for
the corresponding Dirichlet problem, we obtain a Fredholm integral
equation of the first kind. Instead of a single-layer potential, we now get
a double-layer potential. The details are left to the reader.

Let us observe in passing that the solution of (27) is not unique, since
an arbitrary constant can be added to a solution and the resulting
function will satisfy (27).

68.3. EXAMPLES

Example 1. Electrostatic potential due to o thin circular disk. Let us
take S to be a circular disk of radius ¢ on which the potential V is
prescribed. Let us choose cylindrical polar coordinates {p, ¢, z) such
that the origin is on the center of the disk with the z axis normal to the
plane of the disk. Thus, the disk occupies the region z=0,0<p < q,
for all ¢. There is no loss of generality in taking the potential ¥ on
the disk as f™(p) cos re, where n is an arbitrary integer, because we
can use the Fourier superposition principle. The charge density o will
also then have the form 6" (p) cos ne. From (6.2.25), we have

F@(pycosnp = [ [o(®)/|x~E[1dS, (1
disk

where x = (p, ¢,0) and E=(s,¢,,0). Or

[

I (p)ycosng = J

Q9

ir
16" () (cosne,) dp, dt
Lo® + 2 — 2ptcos(p— )]

2
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But, by setting ¢, —¢ = ¢, we find that

Ir—ip

2r
cosnp, dg, B cosn(e+ i) dyr
[P + 12 = 2ptcos(p— )1~ ) [p® + 2 — 2ptcos(p— o )]%
[+

-

_ e (cos ng)(cos mpr) difr
B [p? + 12 — 2ptcos

l
Q . 2n-p

cosmy dify
= (coSnfp)[f + j+ J [p? + 1* — 2ptcos '*l"]lé] "%-

—p [H] Zn
2
cosmp dify
= (cc:)sm,a)JI:p2 T 2prconi R’ (3)
[

where in the first integral we have put " =+ 2.
From (2) and (3), there follows the equation

alx

(r}
FM(p) = J“[ te"™ (Y cosny difr dt @
00

[p? + 2 — 2ptcosy]”’
Finally, we use in (4) the expansion formula
[o? + ¢ = 2prcosy] ™% = 3. [ (260 (cosrt) I, (pp).(p0) dp, (5)
Yo

where &, is the Kronecker delta, and use the orthogonality of the cosine
function. The result is the Fredholm integral equation of the first kind

SO = [0 Kot p) ®
a

where the kernel Ky(1, p) is

Kolt,0) = 2m [ J,(pp)J,(p0) dp . Q)
L]
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For an annular disk of inner radius & and outer radius a, the formula
that corresponds to (6) is

170) = [ " Kott, py dt ®
b

Example 2. Solve the integral equation (6.2.25) when § is a unit
sphere and f=sin #cos ¢; that is, solve the integral equation

2m
sinfcosg = J do, 9

Q

ﬁmmN@@owi
x—g] ‘
1]

Here, we use the expansion formula

LN < YO, 9 6, 00
lx_él _;Nﬂ.n 2 Nm’n ] (IO)

where ¥,"(0, @) are the spherical harmonics and

m=—-n

fl

2r n
N ptyn j de j(sin 8)|Y,"(6, ¢)|* db
o ¢

an_(nklml)!
201 (= )t

(1)

Furthermore, we set

oo

c0Lo) =3 Y GV B0 (12)

H=0m=—-n

and note that sinfcosg@ =1[Y,* (0, ¢) + Y, (0, ¢)]. Putting (10)(12)
in (9) and using the orthogonality properties of the spherical har-
monics, we obtain

Jl,l = 6—1,[ = 3,'"87( .
and ¢, ,= 0 for all other m and n. Thus, from (12), it follows that
G (8,9) = (3/4n) Py  (cosB)cos @, (13)

where P! is an associated Legendre function,
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6.4. GREEN'S FUNCTION APPROACH

The Green's function is an auxiliary function which plays the same
crucial role in the integral-equation formulation of partial differential
equations as it plays in the case of ordinary differential equations. This
function depends on the form of the differential equation, the boundary
condition, and the region. For instance, the Green’s function G (x; &) for
the Laplace equation in an open, bounded region Rin three-dimensional
space with boundary S is the solution of the boundary value problem

-V2G = d(x-8), Gls=0, - (1)

where x and & are in R. In the language of electrostatics, the function
G is the electrostatic potential due to a unit charge at § when the surface
S is a grounded metallic shell. As such, G is the sum of the potential of
the unit source at & in free space and the potential due to the charge
induced on §:

G(x;8) = (1/4n |x—E|) + »(x;8) , @)

where » is a harmonic function which satisfies the boundary value
problem

Vip=0, xeR, v|s=-E. )

Let us show that the Green’s function is symmetric. When G(x;&)
and G(x;#) are the Green’s functions for the region R corresponding
to the sources at & and #, we have the relations

—-V2G(x;E) = 6(x—&), Glg=0, 4
-VIG(x;n) = d(x—y), Gly=0, (5)

The result of the routine steps of multiplying (4) by G(x;#), (5) by
G(x;§), subtracting, integrating, and applying Green’s second identity s

3 ; d ;
I[G(x;a) G _ G XX E”} dS = GEn)— Gor:E). (6)
hy

The symmetry of the Green’s function follows by applying the boundary
conditions in {6).
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Note also that the fundamental solution E(x;E) is the free-space
Green’s function.
Solution of the Dirichlet Problam

We are now ready to give an integral-equation formulation to the
boundary value problem

—V2u(x) = 4np(x), xe R, u‘s =f, (7N

in terms of the Green’s function. For this purpose, multiply (i} by u
and (7) by G, subtract, integrate, use Green’s second identity, and get

u® = 4 [ GGE P d¥ - [fO[OG(:E) o1 dS . (B
R g

By interchanging x and § and using the symmetry of the Green’s function,
we find the representation formula

w( = 4 [ Gx;Dp® aV - [ PGB /@ dS . )
R &

For the particular case p = 0, the formula (9) becomes

u(x) = — [ (&) [8G(x;8)/dn] dS . (10)
T8

When f= 1 on §, then the solution u of the Laplace equation is clearly
u = | for the interior Dirichlet problem. Thus, (10) yields an interesting
relation,

-f [0G(x:E)on] dS = 1, xeR. (11)
5

Example. Poisson integral formula. The Green's function for the
Laplace equation, when the surface S is a sphere, can be found by
various methods. The easiest method is to express it as source and image
point combination, Let the radius of the sphere be a (see Figure 6.1).
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Figure 8.1

For any point P (=x) with radial distance & within the sphere, we have
an inverse point £* {=x"} on the same radial line at a radial distance f
outside the sphere, such that a8 =a® If @ (=E) is any point on S,
then the triangles G QP and OQP’ are easily seen to be similar. Therefore,
¥lr = ala, or

ljr = ajar’ . (12)

Examining the relations (1) and (2), we readily find the value of the
Green’s function to be

1 /1 al
G(P,Q):‘q._(_'__-,)- (13)
T
Having found the Green’s function, we can solve the interior Dirichlet
problem for the sphere:
Viu=10, r<a: u = {8, @) on r=a. (14)

To use the formula (10) we need the value of ¢G/dn. This is obtained
if we observe from the figure that

o = a® +r? —2arcos(x—§,n) ;

(15)
ﬁl

a? +r'? = 2ar' cos(x'—&,n) .
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Thus,
oG _L( 1or alory | feosx—Fm acos(x'—§m)
n 4z ron  aridn) 4nm rt « r?
1 f=dP=r? afP-at-r?\ A=l 6
s 2ar? o 2ar'? C dmar’ (16)

where we have used the relations r'/r = a/u and af = a?.
Substituting (16) in (10), we finally have

(17)

w? + a® — 2amcos(x,E)%

r2r

2 g 0 wm’ H + ' ¢

2 (P) = a(admrx )”(.f(a,(p)(smmdo do
(1]

Neumann Problem

By defining the Green’s function G (x; &) by the boundary value problem
—VIG(x;8) = 6(x—8), aG/onls =0, (18}

we can extend the above analysis to the Neumann problem. Indeed, the
integral equation that corresponds to (10) for the Neumann problem

-Viu=20, XxeR, Qudn=7f (19)
w0 = [ G BB dS . (20

Of course, the function f must satisfy the consistency condition (6.2.28).
Finally, let us consider the interior and exterior Dirichlet problems
for a body 5 enclosed within a surface Z:

Vi =0, xeR, wuls=/1, 2D
Vig, =0, xR, , we|s =1 u g = 0. (22)

The Green's function G (x; &) satisfies the auxibary problem (we absorb
the factor 4x in G):

~Vi@G = 4nd(x—-8), G|g=0. (23)
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We now follow the same steps as we did in deriving the formula (6.2.25).
Thus, from the relations (21)+23), we obtain

S = [ G Ba®) ds, (24)
s

which reduces to (6.2.25) for an unbounded medium.

6.5. EXAMPLES

Example 1. Electrostatic potential problem of a conducting disk
bounded by two parallel pianes. This problem is an extension of the
problem considered in Example 1 of Section 6.3. We follow that notation
and assume that the parallel planes are z=5 and z= —¢ (b,c > 0.
The boundary value problem becomes

VV(p,9.2) = 0 in D, (N
V(p, 9,00 = f"(p)cosng, O<p<a, (2)
V(ps(P9z)=09 Z=b, z=-C, (3)

where D is the region between the disk and the parallel planes.
The Green's function & corresponding to this problem satisfies the
auxiliary system

—V2G(x;E) = 4nb(x—E), G=0 on z=b, z=—¢c. @

This function is found easily by the method of images. Indeed, for a
positive unit charge at the source point & = {#, ¢,, z,), the image system
consists of positive unit charge at the points (s¢¢ Figure 6.2)

4 b
L
2 ® 2 @ S =]
~dg=Zh=1, —Ec-éb+z‘ —2c—lz' 2= O ;‘ z=b 2?—21 2b+2c+z, 4h+21c—z‘

Figure 6.2
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£ =[Lo,2nb+)+2,1, n==zxl£2,.., (5)
and negative unit charge at points
£, =1{rne,20b+c)—2c—2,], n=0+1,+2,... {6
The value of the Green’s function therefore is
1 > < 1 & 1
O =g+ 2 gt 2 e 2L e
(7

The next step is to use the identity

|x—8| = [Jo(pm)(exp —plz—z,) dp , ®
0

where @ = [p? + 12 — 2ptcos(¢ — ¢, )]*. Then, the relation (7) takes the

form
G(x:) = (Ux~&) + [ Jo(pm) S exp —plz = 20(6+0) = 2]
) |

+ Y (exp—plz—2n(b+0) — 2,))
-1

—i (exp—plz—20(b+ )+ 2¢ + 2(})
o

-3 (exp —p]z—2n(b+(‘)+2€+zl[)] dp . (9)
-1
After summing the geometric series which occur in relation (9) and slight

simplification, we obtain

1 o
G(x:8) = TR jlo(pm)
0

O — o P UL 1370
e [sinhp(z .b)] e [sinhp(z+ )] dp. (10)
sinh p(b+¢)

Finally, the result of using the expansion of J,(pw),
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Jolpw) = 3 (=do)[eosr(p=e 1), (p), (1)

in (10) is
Gx:8) = —— + 3 2—bo)[cosr(@0—9) G t,2,20,  (12)
Ix_éi r=0

where

oo

G Np, t,z,2,) = J

]

e Ptz Isinh p(z—b)] — e P® ) [sinh p(z + )]
sinhp(b+¢)

x 1, {(pp)J,(pt) dp . (13)

To derive the integral equation, we multiply (1) by G and (4) by ¥,
follow the routine procedure, and get

l Fel 4 aG
V 2y = — — =] — |
(p, 0,2) 4r J (G on 6.'1)({8' (14

S++5-

where §7 and S~ are the upper and lower parts of the disk, respectively.
On the surfaces ST, the value of the outward normal is Fd8/dz,,
respectively. Using this fact and the boundary conditions (2) in (14),
we have

a n

1 @)cosng = [ [ 0P()Gp,1,9,0,,0.0) (cosnpy) dpydr,  (15)
20

where 6™ (Hcos neg, = (1/4m)(3V/dz, . — OV{dz,_). Setting @, — ¢ =, and
following the steps which led from (6.3.2) to (6.3.4), we obtain

a 2

7o) = f 16 (1) drj
o

o

" cos nyr dyr

|x_é|z=3[:0

+ j 1™ (1) [22G™ (p, 1, 0,0] dt , (16)
]

where we have substituted the value of G as in (12). This can be written as
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1) = [ @K o), (7

where

2
_ cos my dif
K (t,p)= J.[szrtz_zptcosnff]
o

z + 286G (p,1,0,0) . (18)

When b— o0, c— a0, we recover the formula (6.3.4).
For an annular disk of inner radius » and outer radius a, the formula
which corresponds to (17) is

f@p) = [ 16K, (1) di (19)
b

with the same kernel as in (18).

Example 2. FEiectrostatic potential problem of an axially symmetric
conductor placed symmetricaily inside a cylinder of radius b.  We again
take cylindrical polar coordinates (g, ¢, z) with origin at the center of
the conductor and z axis along its axis of symmetry (which is also the
axis of the cylinder). For simplicity, we take ¥ on the surface S of
the conductor to be unity. Then, from the relation {6.4.24), we have the
Fredholm integral equation of the first kind

1 =jc(x;g)a(g)ds, xEeS, (20)
g

where ¢ satisfies the system
—V:G =4né(x-&), G=0 on p=5b. 2N

In terms of cylindrical polar coordinates, the differential equation for

(i becomes
1 & oG 1 826G 9*G 4r
53 (,o ap)~i—p2 5o T 5 Hp—-o(y)d(z—zy), (22)

where ¢, — g = . From the definition (6.4.2) of the Green's function,
we know that

Gi(x;8) = G(x;8) — (1/Ix—&}) (23)
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is finite in the limit as x »§. We can calculate the solution of (22) by
taking the Fourier series expansion

ol

G(x;8) = Y (2-8,) (cosny g (p,1,2,2,) , (24)

r=1

where
27
¢ = (1/2m) | G(x;&)(cosrip) dif .
0

Multiply the differential equation (22) by (1/2x)cossf and integrate
with respect to ¢ from 0 to 2z, The result is

1 ¢ ] r g 2
Wy P o ) LA & B AN YO _
pap(papg ) 29 T ’ (p—0)d(z—zy). (25
Next, we take the Fourier transform of equation (25) by setting
T(g") = @m)™% [eg" dz ;
g7 = Q0% Je TG dp . (26)

— 00

The system (21} becomes
2 d2 (r} d ) 2.2 2 ir¥
'~ T(g )+pEoT(g )= (0" pA+r)T(g"™)

dp*
J2 o

= eFé(p—1), T@" =0, p=56. (27
o p=1)

This boundary value problem can be easily solved by the method and
notation of Chapter § and the solution so obtained is then inverted
to yield

g = (1) [ 77D (K (pp,) L (pp-)

- — (K (D)L (pbY]1 1, (pp) L, (pD)} dp . (28)

where I, and K, are modified Bessel functions. Finally, from (24) and
(28), we find the value of G-
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GO:8) = (m) T =) (eosry) [ e~

x {K(pp>) L{pp <) — [KAApd) T (p)) I.(pp) L,(pD)} dp. (29)
When b— o0, G = 1/|x—§|, and we have from (29),

ix—&| = (1/m) 2%)(2—50,)&:05&&) fei""““K,(pm)h(pm)dw
= (30)

Combining {29) and (30), we have

GOx®) = (Ix=E)+ 3 Q-do)(cosr) GC(p,5,2), (1)

where

o

—(Um) [ 70 1 (pp) L) LK pbY 1 (pbY] dp

G(J’}(p, I,Z,ZI)

o0

—(/m [ €7 L(pp) L0 LK. (pb)/ 1 pbY] dp
o

-0
n J‘ e~ (o) 1 (pO T KA pB)/ L (pb)] ffp]- (32)

Changing p to —p in the second integral and observing that
(-2 = (~IV I, K(-2=(-1VK(2),
and hence K,(—pb)/[.(—ph) = K. (pb){{.(ph), we have from (32)

@

G(rl (P, f, Z,Zl) = _{2‘(?{)1“[!?(10!9) ‘rr(pr) Kr(Pb)
o

1,{pb)

]COS [piz—z)]dp. (33)

So far, we have not used the fact that the conductor is axijally
symmetric. For an axially symmetric body, the Green’s function is
independent of ¢. That leaves only one term in the series (31):

G(x;8) = (1/[x—§&|) + GCp,1,z,2) . (34
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Equation (34) is of the form (23). Substituting (34) in (20), we have the
required integral equation. When b — co, we recover equation (6.3.4)

for f™p)=1.

6.6. THE HELMHOLTZ EQUATION

The discussion of the previous two sections can be gasily extended to
the case of the Helmholtz equation

(V24 Hu=0. (N

The free-space Green’s function or the fundamental solution E(x;&)
is the solution of the spherically symmetric differential equation

—VIE - AE = 8(x—E), (2)
and which vanishes at infinity. Such a solution in three dimensions i

exp(i|x—&|\/T) _ exp(ir\/1)
am|x—& = 4wr

E(x;8) = (3)
(i) When 4 is a complex number, then \/7, is selected to be that root
of A that has a positive imaginary part so that £ vanishes exponentially
at infinity.
(i) When A is real and positive, that is, A = w?, w real, the solution

expio|x—§|  expiwr

dn|x—-&|  4dur “)

E(x:§) =

is selected such that \,-“’?.zau 0. This represents an outgoing wave
if we adjoin the factor ™.

(iii) When A is real and negative, we again choose ﬂ in {3) to be
the square root of A that has a positive imaginary part for the same
reason as in (i). For the particular case 1 = —k?, where k is real and
positive, the formula (3) becomes

E(x;8) = e *jdnr . ()

The solutions which correspond to (3), (4), and (5) in two dimensions
are
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(Y H (x84,  ((HH(w|x—E]),  (1/20)Ko(k[x—§[},

respectively. Here, the functions H{'' and K, are the Hankel and
modified Bessel functions, respectively.

The integral representation formula for the solution of the inhomo-
geneous equation

(VP~kPHu = —dnp (6)

is obtained from the relations (2) and (6) by using Green’s identity and
is readily found to be

—kr —kr —kr
u(x)=_[p'?r av— L a(£—)ds+ij"r s
R 5

A ué;: r 47 on
5

The interpretation of these integrals as volume, single-layer, and double-
layer potentials is the same as for the corresponding formulas in Section
6.2. The properties of these potentials are also similar. For instance, the
formulas that correspond to (6.2.7) and (6.2.8) are

du
on

4

—kr
= T2n0(P) + j ¢(Q) a% (T) as, (8)
5

e—kr
u=fa(Q)( . )dS. %)
5

Similarly, the formulas that correspond to (6.2.10) and (6.2.11) are

P

where

e, = £200(P) + [ () & @ ¥ ds (10
N

where 2
— —kr
u —!t(Q)é—; e ™/r) ds . (1n

The rest of the notation is the same as in Section 6.2,

The integral representation of salutions of the exterior and interior
Dirichlet and Neumann problems is achieved in an analogous manner,
as shall become evident from the examples of physical interest which are
presented in the next section. We end this section by mentioning the
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so-called Sommerfeld radiation condition. A three-dimensional solution
of the Helmholtz equation (V>4 k%)u = O is said to satisfy the radiation
condition if

r

limr((—? —iku) =0, (12)

as ¢ —» c0. Physically, this condition implies that there are no incoming
waves from infinity. In two dimensions, the corresponding condition is

.o ~fou
lim \/r(a - :ku) =0, (i3)

as r— oo, The free-space Green’s function satisfies the radiation
condition.

6.7. EXAMPLES

Example 1. Acoustic diffraction of a plane wave by a perfectly soft
disk. We follow the coordinate system and notation of Example | in
Section 6.3. Furthermore, we assume the time dependence of the form
e~ for the wave functions involved in the problem and omit this
factor in the sequel. The time-independent part of the velocity potential
u is

N(p, (pvz) = ui(pa ®, Z) +us(p= (Pvz) ] {1)

where u; and u, denote the velocity potentials of the incident and
diffracted fields. All three functions occurring in equation (1) satisfy the
Helmholtz equation. The boundary value problem is

(V24+k%u, = 0, @)
ui{p 0,0 +u(p,0,0) =0, O<p<a, (3)
u, and Ju/dz arecontinuous across z = (, a<p<oa, (4

and u, satisfies the radiation condition at infinity. The fundamental
solution £ that satisfies the equation

~(VI+L)E = 5(x—8), (5)
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as well as the radiation condition is

exp(ik |x— &)
4 |x—E|
expik {p* + 1> — 2pt[cos(@p— )] + (z—2,)*}*

T Tan{p® + £ - 2ptlcos(@—@ )] + (z—zy) 21 E ©)

E(x;8) =

Multiply (2) by E, (5) by u,, subtract, integrate, use Green's second
identity, and obtain

d
woo = | (E%-ul)as. )

S+ 5-

where $* and $~ are the upper and lower surfaces of the disk, respec-
tively. On S*, we have 3/dn = F38/8z, respectively. Thus, (7) can be

written as
JE
3(.05q0!z) E__+ 5 td(deI
azl z, =0+

ftoe] e

a2x

= _J‘J‘ra(r’whO)E|n=0dtlaldtv (8)
oo

where we have used the fact that u, = — u, on both sides of the disk and

where
) . )
2, =0-

When we apply the boundary condition (3) in (8), we get

du,

U(r’ (P],O) = (E

0o+ 02

a2
1 T ot o0 expik[p? + 12 = Zprcosto— o)1
4n [p% + 12 — 2ptcos(g—@,)]"
6o

x de dt . (10)

“i(l’v @, 0) =
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In view of the Fourier superposition principle, we can assume
that u(p,p,2) and a(p, @) are of the form &' (p,z)cosng and
20 (p) cos ne, respectively. Then, proceeding as in the steps that led
from (6.3.2) to (6.3.4), we obtain from (10) the integral equation

w0, 0 = [ 16 WK, (1, p) et , (I
0

where the kernel K, {z, p} is

2
exp ik(p® + 2 — 2pcosy)”
(0% + 12 — 2ptcos )

Ki(p) = — cosmp dp . (12)

2n
4]
The integral equation (11) is the required Fredholm integral equation
of the first kind which embodies the solution of the boundary value
problem (2)—(4).
For an annular disk with inner radius # and outer radius a, the
corresponding integral equation is

(0,00 = [ 16 DK, (t,p)dt . (13)
b

Example 2. Torsional oscillations of an elastic half-space. 1In terms
of cylindrical polar coordinates, the axially symmetric boundary value
problem
a2y law v Do w® da®
—t-— =+ —+ k=0, k% = R 14
dp* pop p* 87 It (19
v=Qp, z=0, 0<px<Il, (15)
dvjdz = 0, z=0, p>1, (16)

embodies the torsional oscillations of a homogeneous and isotropic
half-space which occupies the region z = 0. A disk of radius « is attached
to it and is forced to execute torsional oscillations with peried 2mjc.
All lengths are made dimensionless with 4 as the standard length, so that
the disk occupies the region z =0, 05 p < 1. The quantities « and u
are respectively the density and shear modulus of the elastic material,
whule £ is a dimensionless parameter.
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It is easily verified from (14) that the function w(p, ¢, 2),

wip, @,z) = v(p,z)cos ¢, an
satisfies the Helmholtz equation
Vi4+kHw =0. (18)

The Green’s function that corresponds te this boundary value problem
satisfies the auxiliary system

(V2 k) G(x:8) = —4nd(x—8);  —— =0, (19)
0z; [z, -0
where, as before, x = (p, ¢,z) and & = (1, ¢;. z,). Again the method of
images gives us the value of &
expikr expiks

Gax;p) = ST R 20)

r

where r = |x—E|, ¥ = |x—E'|, and &' is the image of £ in the plane
z =0, that is, & =(t, ¢,, — 2,). Thus,

r={p® + 1* — 2ptfcos(p— )] + (z—2,)*}%,
r={p* + 1 — 2pt[cos(@p—@,)] + (z+2,)*}2 .

The differential equations (14) and (19) present us with the integral
representation formula by the routine procedure. The required relation is

21)

w = v{p,z)cosqo

1 do aG
o — —_— ——— a— . 2
yp j [ Gé‘zl cosg; + vﬁzl coqu,:L:O das (22)
;=0
Applying the boundary conditions (13), (16), and (19}, in (22) and
using (20), we have
1

|
Qpcosgp = ﬂ_f@m
4]

in
y expik[p? + 1> — 2ptcos(p —¢,)]"
[o® + 12 — 2ptcos(p—,)]%

cos @, dp, dt, (23)
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where
de
o) = “az o
Set @, —@ =1, proceed as we did in the relations (6.3.2)—(6.3.4),
and obtain

(24)

1
Q = [ K, G pydr, O0<p<l, (25)
1]
where

n
K.t p) 1 [ expik(p®+1*—2ptcos )
e = o (p?2+ 12— 2prcos )™

0

osy dy . (26)

Finally, we use the identities [21]

expik(o®+#2 —2ptcosy)” [ plofp(p®+1*—2ptcosy)”] W Q7
(P*+12-2pcosy)® ¥ "
o
where
—ik*-p?ye,  kzp

e, prk
and
JoLp(p® + % =2ptcos )] = Y (2—8y,) (cos )] (pp) J,(p?) (28)

r=0

in (26), use the orthogonality of cosine functions, and derive
Ki(t,p) = f(pfr)J. (po}J . (prydp . (29)
4]

When @ — 0, we get the corresponding integral equation for the steady
rotation of the elastic half-space, and (29) becomes :

K\(tp) = [ J,(po) ] (pt) dp . (30)

For the case of an annular disk with innet radius b and outer radius
a, the integral equation that corresponds to (25) is of the form
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a

Qp=jt¢(r)K1(t,p)dt, b<p<a. (31
b

Example 3. Sready Stokes flow in an unbounded wmedium. The
Stokes flow equations

Viq=Vp, V.q=0 (32)

govern the slow, steady flow of incompressible viscous fluids. These
equations have been made dimensionless with the help of the free-stream
velocity u and a characteristic length ¢ inherent in the problem. The
quantities q and p stand for the velocity vector and pressure, respectively.

Let S be the surface of a solid B moving in the fluid ; then, the boundary
conditions are

q(x)=¢,, xeS, qx)=0 a x->ow, (33

where e, is the direction of motion of 8, taken to be in the x, direction.
The boundary value problem (32)-(33) can be converted into a Fredholm
integral equation of the first kind by defining the Green’s tensor T,
(or T,,) and Green’s vector p, (or p, ;), which satisfy the mathematical
system

V2T, —¥p, = —~18(x—§), (34)
VT, =0, T, =0 as X — o, (35)

where I = d;;, the Kronecker delta.
It follows by direct verification that the system (34)-(35) has the
representation formulas

T, = (1/8m)[IV? ¢ — gradgrad¢], p, = —(1/8n)grad V> ¢, (36)
Vi = V2V29 = —Snd(x—E). (37)

The appropriate solution of the biharmonic equation (37) is ¢ =r=
|x —E&|. Thus,

T,

(1/8m) [1V? |x—&| — grad grad |x—E|], (38)
—(1/8n) grad V¥ |x —§&| . (39)

| L1

The required integral equation formula now follows by taking the
scalat product of (32) by T, and of (34) by q and using the usual steps of
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subtracting and integrating. In the integral so obtained, there occur
terms T+Vp and q-Vp and they can be processed by using the identities

Vigp) =q¥Vp,, ¥V (pT)=T,'¥p, (40)

where we have used the results V-q = VT, =0. The final result is

a0 = —J[(g—q—pn)-"rl—q-(a—;‘ - npl)]ds. 41
n n
s

From equation (34) and the divergence theorem, it follows that, if q is
constant on §, then equation (41) reduces to

a®) = —[ T, ds, “2)
B
where
f=2_ 43)
an

Finally, using the boundary condition (33),, we have the required
integral equation
e, = —jf—T1 ds . (44)
y

Example 4. Steady Oseen flow. The dimensionless Oseen equations
are

Rogléx, = —Vp+Viq, Vq=0, (45)
g=e, on §; 9q—-0 as x-w, (46)

where 2 = ua/v is the Reynolds number, v is the coefficient of kinematic
viscosity, and a and u are the same quantities as defined in the previous
example. The Green’s tensor T and Green’s vector p for this problem
satisfy the system

ROTfox, = —Vp+ VT +18(x—8), (47)
ViT=0, T->0 as X — o0, (48)
The corresponding representation formulas are

T = (1/87)[I1V? ¢ — grad grad 4] , (49)
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p = —(1/8n)grad[V? ¢ — R ddjix,] . (50)
VUV - R3/0x)p = ~Snd(x—E). (31)
To selve equation (51) for ¢, we first use the formula
VA(1f|x—§|) = —4nd(x—E) (52)
in it and obtain

VE(VE — Rojox)) ¢ =2V (1/|[x—E)). (33)

Thus, if ¢ satisfies
Vi — Ropjox, =2{|x—E], (54)

then (51) is satisfied.
On the other hand, we can also write (51) as

(V2—R3[dx,)V> ¢ = —8rd(x—E). (55)
By setting
Vi =4 (56)
and using the identity

(VZ _ 0.2) [e—a{xl =1 !p] = g_"(x' il [VZ—Zaé‘f@xi] d/ f (57)
we can write (55) as
(vz_G.Z) [e_d(xl_'zl:'l!]] = _gne_"*l“fl’é(x—ﬁ) (58)

with o =298, Now, observe that, by the nature of the Dirac delta
function, the factor ¢~ ** 7% nfluences the equation only at x, =&,
where its value is unity. Thus, (58) yields

2
|x_§!exp{—!dl[ix—§l—;—I{xi—él)]}- (59)
From (54) and (59), we obtain

o _ o
0%~ Te—g| ('_e"p{““‘["‘_“_|o! tx 51)]})' “

IT we set

hx 8 = Vg =

s = |x-§ - (Uf{ial)(xl_él)’ (61)

we have
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'_af' _ (-’ﬁ‘ﬁl)_ o _ {x,—¢y) _ |_0'1
ox,  |x—& o |x-8& o’
e T __lsls
g (s ea) - @
Combining (60)-(62) with
W% _2
dx, s &x,’
we find that
dpids = (1—e"1"Mylg|s
or
4K
o =0flo]) [ [—eYrldr. (63)

o]

Thereby, the Green’s tensor T and Green'’s vector p are determined.

The integral equation equivalent to the boundary value problem
(45«46} is now found precisely the way we found the integral equation
(41). Indeed, the present formula is

p 4T
q(x) = —I[T-(a—:—pn) - (a —pn)-q - @(T-q)m:l s, (64)
hy

where #, is the x, component of the outward normal. When we use the
boundary condition q=e, on S, equation (47), and the divergence
theorem, we obtain

e, = —J'T-fds, (65)
¥
where f is defined by (43).

Example 5. Heat conduction. The boundary value problem

du

Viu—ku=—px), XER,, pw =0 (66)

R

embodies the solution of the heat conduction problem of an infinite
expanse of material containing a cavity § on which the temperature
gradient is zero. Qur aim is to give the system (66) an integral-equation
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formulation. For this purpose, we assume that # can be represented as
the sum of a volume potential and a single-layer potential

4rux) = [ P E@:R) AV + [ a(®) E(x;8) dS 67
&

Re

where E(x;8) = [exp(—k[x—E])]/|x—E&| and ¢ is an unknown source
density.

The next step is to take the normal derivative of both sides of equation
{67), let x approach 8, and use relation (6.6.8). The result is

JE(x; oE(x;
0- fp@) = g)dv—zm(xnja@) D
Re

ds,  (68)

s

which is a Fredholm integral equation of the second kind in o(x).

The reader who is familiar with the theory of heat conduction is
advised to formulate the corresponding problem of the composite
medium into a Fredholm integral equation of the first kind.

EXERCISES

1. Show that when S is the surface of a unit sphere {a) the solution of
the integral equation

pzeosp = f“(Plszt)Ix_gi_ICOS‘Pl ds
‘s

iso :.(5,312) P, (cos®); (b) the solution of the integral equation

(1/2) pz’ cos @ = (3/8m) ]‘P,l(cosﬂl)lx—ﬁlcosqal ds

iy

+ [ olor,z) |x—&| ' cos g, dS
by

is ¢ = (1/4m){(3/2) P, (cos O)+(7/15) P5 ' (cos B)].
In the above relations, (g, ¢, z) are cylindrical polar coordinates.

Hints: (i) Use the formula
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- { x* ] .
|x—&l = r. z (m— T I)X P(cosy) ,

¥=0
where
X =r.r., ro. = min{r,r)), r, = max(r,ry),
cosy = cos(cosd, + sin@sinf, cos{p—¢,),

while (r, @, ® and (r,,¢,,0,) are the spherical polar coordinates of x
and §, respectively.

(ii) On the surface of the unit sphere, p =sinf, z =cos 8.
2. Show that the solutions of the integral equations

poose = | o(py,z)[x—E| "' cosg, dS
5
and

0= [a(p1,2) [x—&| ' cos g, dS
5

+4 f (o, z )| x—&lcosgp, dS,
5

where S is the surface of a thin circular disk of unit radius, are
o =2 (1—pM%, o = p2—p)3n(1—pH*%.

3. Starting with the Cauchy integral formula for an analytic function

) = (12m) [ LAOKe—2] et

where C is the circumference |z| = ¢ and z is in the interior of €, and
using the formula

0 = (1/2x) [ AOKe-291de, 2% = @)z,

which is a result of Cauchy theorem because the image part z* (of z) is
exterior to C, derive the Poisson integral formula in a plane:

2n
a*—p? fla,0) d8
2n a* — 2aplcos(0—@)] + &~
o

u(p, @) =
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4. Discuss the single-layer and double-layer potentials in two-
dimensional potential theory by starting with the formula

E(x;&) = (1/2m) log(1/lx—&|)
instead of (6.2.2).

5. With the help of the results obtained in the previous exercise, prove
that the solution of the interior Dirichlet problem in two dimensions
can be written as

w(x) = [ [(cosp)/Ix—&[1x(®) a7 ,
C
where ¥ is the angle between (x — &) and n; and 47 denotes the element
of the arc [ength along the curve C.

6. Proceeding as in Example | of Section 6.7, show that the following
boundary value problem,

(V2+kHu, = 0,
du iz = —du,foz on z=0, Ospsa,
w, and Ou/dz are continuous across z =10, < p<co,

and u, satisfies the radiation condition, reduces to the integral equation

ou, YT fexpik|x—¢|

ok 0) = | te(t| — [ ———= do, dt

az (pstp! ) Jd( )[azz( |x_§| b0 (pl{
Q

where o(f) = (1/4n)(n,|,, = o+ — |- =0~ ). This boundary value problem
embodies the solution of the diffraction of a plane wave by a perfectly
rigid, circular thin disk.

7. By following the method and notation of Example 3 in Section 6.7,
prove that the integral representation formula for the velocity vector
when the fluid is bounded by a vessel Z is

ax) = —H(g—:_pn).r_q.(g_:_np)] ds .

Substituting the boundary condition q=¢, on § gives the Fredholm
integral equation
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e, =—jr-Tds.
hy

Here, T satisfies the boundary value problem
VIT —gradp = I6(x—&), V:T=0, T=0 on X.
8. The dimensionless equations of elastostatics are
(A+wgradd + pN2u =0, 8 = divu,

where u (4. i=1,2,3) is the displacement vector, and A and u are
Lamé constants of the medium. The above equations have been made
dimensionless by introducing a characteristic geometric length a,

Consider the uniform translation of a light, rigid body B with surface
S, which is embedded in an infinite homogeneous and isotropic medium.
Prove that the corresponding Green’s tensor T, and Green's dilation
vector B, are given by the formulas

A by Ak im8)(y=¢)
W Rm|Avon =8 Tvou x—&° |’

9. = 1 u X — &
U 4m A 2u| Ix—EP |

Also prove that the integral representation formula is

du
u(p) = —j {l}l% + (A+u)0n]‘T
8

—u‘[u%! + (l+,u)0,n]} ds.

Using the boundary conditions

u = (dyfa)e on §; u—-0 at oo

where d, is the magnitude of the translation and e is the unit direction
along the translation of B, show that the Fredholm integral equation
that embodies the solution of the above problem is

(dofa) e = -jf-Tl ds,
where
f = u{dujdn) + (A+pu)on .
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Extend the above results to a bounded medium.

9. Proceed as in Example 1 of Section 6.3 and Example 1 of Section 6.7
and give the integral-equation formulation of these problems for a
spherical cap.

10. The Schriédinger equation
VY (x) — 2mBHV(OY(x) + k2 g(x) = 0

with boundary condition that ¥ (x)exp(—iEt/k) represents an incident
plane wave, with wave vector kg, as well as the condition that we have
an outgoing wave as X — o, describes the quantum mechanical theory
of scattering by a potential V(x). Here, &% = k,* = 2mE/h?, and other
quantities have their usual meaning.

Use the method of Section 6.6 and prove that we can transform this
scattering problem into the integral equation

m [ expik|x—E|

I x_g| VR 4V .

Y {x) = {expiko-x) —

Find its solution by the method of successive approximations (the
approximation obtained in this way is called the Born approximation).
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7.1. INTRODUCTION

A kernel K(s, 1) is symmetric (or complex symmetric or Hermitian) if
K(S, t) = K*(t,S) 1 (])

where the asterisk denotes the complex conjugate. In the case of a real
kernel, the symmetry reduces to the equality

K(s, 1) = K(1,9) . (2)

We have seen in the previous two chapters that the integral equations
with symmetric kernels are of frequent occurrence in the formulation
of physically motivated problems.

We claim that if a kernel is symmetric then all its iterated kernels are
also symmetric. Indeed,

Ky(s,t) = jk(s, X K(x, 1) dx = f K*(t,x) K*(x,5) dx = Ky*(1,5) .
Again, if K,{5,) is symmetric, then the recursion relation gives
K., (58 = j K(s, %) K, (x, £) dx
- J K*(, ) K*(x,5) dx = K,, *(1,5) . (3)

132
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The proof of our claim follows by induction. Note that the trace
K(s, s) of a symmetric kernel is always real because K(s,s) = K*(s, s).
Similarly, the traces of all iterates are also real.

Complex Hilbert Space

We present here a brief review of the properties of the complex
Hilbert space %,(a, &), which shall be needed in the sequel. This
discussion is valid for real .#,-space as a special case. A linear space of
infinite dimension with inner product {or scalar product) (x, ¥} which
is a complex number satisfying (a) the definiteness axiom (x,x) >0
for x #£0; (b) the linearity axiom (xx,+fx,, ¥} =a(x;, V) +E{x5, )},
where « and f are arbitrary complex numbers; and {(c) the axiom of
{Hermitian) symmetry (y, x) = (x, »)*: is called a complex Hilbert space.

Let H be the set of complex-valued functions ¢(r) defined in the
interval (a, ) such that

[1e@I?dr < oo @
Furthermore, let us define the inner product by the bilinear form (1.6.1):
@9 = [ py*@yar. )

Then, H is a linear and complex Hilbert space #,(a, #) {(or .&,). The
norm |¢| as defined by (1.6.2),

16 = ( [ 19 ) (6)
is called the norm that generates the natural metric
dd.9) = |¢—d| = (b—v,¢—)". @

The Schwarz and Minkowskii inequalities as given by (1.6.3) and {1.6.4)
are

(@, ) < [lof |} (8)

le+¥l < [of + byl . 9

Also recall the definition of an #,-kernel as given by (1.2.2)-(1.2.4).
Another concept that is fundamental in the theory of Hilbert spaces
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is the concept of completeness. A metric space is called complete if every
Cauchy sequence of functions in this space is a convergent sequence.
If a metric space is not complete, then there is a simple way to add
elements to this space to make it complete. A Hilbert space is an inner-
product linear space that is corplete in its natural metric. The complete-
ness of #,-spaces plays an important role in the theory of linear
operators such as the Fredholm operator K,

K¢ = frc(s, NG dt . (10)

The operator adjoint to K is
K*g = _[K*(r,.v)u‘;(r)dr. (11)
The operators {10) and {11} are connected by the interesting relationship

(K, ¢) = (¢, K*y) . (12)
which is proved as follows:

Ko 9) = [ W@ ([ KGs,09() dr) ds
= [ SO [ K(s,1py*(s) ds]
= [ @[ K. 9)y* () dr} ds
= [ @[ K*@ 99 dr}* ds
= (. K*¥) .

For a symmetric kernel, this result becomes

(Ko, i) = (¢, Ki) , (13)

i.e., a symmetric operator is self-adjoint. Note that permutation of
factors in a scalar product is equivalent to taking the complex conjugate,
i.e., (¢, K¢) = (K¢, ¢)*. Combining this with (13), we find that, for a
syaimeltric kernel, the inner product (K¢, @) is always real; the converse
is also true and forms Exercise | at the end of this chapter,
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An Orthonormal System of Functions

Systems of orthogonal functions play an important role in the theory
of integral equations and their applications. A finite or an infinite set
{¢,} is said to be an orthogonal set if {¢;, ¢;) =0, iz j. If none of the
elements of this set is a zero vector, then it is said to be a proper orthogonal
set. A set is orthonormal if

0, i#j,
(d‘)b ¢;) = . .
1, I=j.
Individual functions ¢ for which l¢] = I are said to be normalized.

Given a finite or an infinite (denumerable) independent set of
functions {yr,,¥,,....t,, ...}, we can construct an orthonormal set
{d,¢3 ..., ¢y, ...} by the well-known Gram-Schmidt procedure as
follows.

Let ¢, =/, . To obtain ¢,, we define

wa(8) = Wa(8) — Wy, 1), .

The function w, is clearly orthogonal to ¢ ; thus, ¢, is obtained by
setting ¢, = w,/|w,|. Continuing this process, we have

k—1
wi (8} = Y (s) — zl('f’m )b, = wif|will

We have, thereby, obtained an equally numerous set of orthonormal
functions. [n case we are given a set of orthogonal functions, we can
convert it into an orthonormal set simply by dividing each function by
its norm.

Starting from an arbitrary orthonormal system, it is possible to
construct the theory of Fourier series, analogous to the theory of trigono-
metric series. Suppose we want to find the best approximation of
an arbitrary function ¥(x) in terms of a linear combination of an
orthenormal set {¢, ¢, ..., ¢,). By the best approximation, we mean
that we choose the coeflicients 2,,2,,...,2, such as to minimize
¥ — 3,2, &;¢;[l, or, what is equivalent, to minimize |y — X", o, ;]

Now, for any «y, ..., d,, we have
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- % adl? = 0+ $ 10 —al = S . (19

It is obvious that the minimum is achieved by choosing «; = (¢, ¢} = 4,
(say). The numbers g; are called the Fourier coefficients of the function
i (5) relative to the orthonormal system {¢;}. In that case, the relation
{14) reduces to

”':t‘_i; o fil)? = ||¢”2_I‘;l sl . (15)
Since the left side is nonnegative, we have

3 laf? < 4wl (16)

which, for the infinite set {¢;}, leads to the Besse! inequality
;IIasIZ < l?. (17

Suppose we are given an infinite orthonormal system {¢,(s)} in
Z,, and a sequence of constants {x;}, then the convergence of the series
3.2, leg?| is evidently a necessary condition for the existence of an
Z,-function f(5) whose Fourier coefficients with respect to the system
¢; are ;. [t so happens that this condition is also sufficient and the result
is embodied in the Riesz-Fischer theorem, which we state as follows
without proof.

Riesz—Fischar Theorem. If {¢;(s)} is a given orthonormal system
of functions in %, and {«;} is a given sequence of complex numbers
such that the series 3,2, |2,%| converges, then there exists a unique
function f(s) for which «; are the Fourier coefficients with respect to
the orthonormal system {¢;} and to which the Fourier series converges
in the mean, that is,

“f(S)_Ei a; ¢} = 0 a8 mn— .

If an orthonormal system of functions ¢; can be found in #;-space
such that every other element of this space can be represented linearly
in terms of this system, then it is called an orthonormal basis. The
concepts of an orthonormal basis and a complete system of ortho-
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normal functions are equivalent. Indeed, if any of the following criteria
are met, the orthonormal set {¢, ..., ¢, ...} is complete.

{(a) For every function  in %#,,
¥ = Z(lf/s(i)i)‘ﬁi =Zaf‘.b£- (18)

(b} For every function 1 in &,,

W17 = 3 1 001? (19)

This is called Parseval’s identity.

(c) The only function v in %, for which all the Fourier coefficients
vanish is the trivial function (zero function).

(d) There exists no function ¥ in &, such that {f, ¢, ..., ...} i5
an orthonormal set.

The equivalence of these different criteria can be easily proved.

One frequently encounters Fourier series of somewhat more general
character. Let r(#) be a continuous, real, and nonnegative function in
the interval {a, ). We say that the set of functions {¢,} is orthonormal
with weight »(#) if

. 0, j#k,
[r ;) by dt = { _ (20
1, i=k.

The Fourier expansions in terms of such functions are treated by intro-
ducing a new inner product

(. ¥) = fr(f)¢(f)¢*(F) dt (21
with the corresponding norm
(ol = [ rne@é* @ dn* . (22)

The space of functions for which |¢[, < oo is a Hilbert space and all
the above results hold.

Some examples of the complete orthogonal and orthonormal systems
are listed below.

{a} The system ¢, (s} = (2n) “2¢™* is orthonormal, where k is any
integer — o0 < k < 00,
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(b} The Legendre polynomials

1 d" (-1
Po(sy =1, PR(S)-E,,—H-!T, n=12..

are orthogonal in the interval (—1,1). Indeed,

fP(uw)d > s (23)
(S)Pi(s) ds =
ERE A Wk+1y, j=k.

() Let 2, , denote the positive zeros of the Bessel function J,(s),
k=12,...; n> —1. The system of functions J, {2 ,s) is orthogoenal
with weight r(s) = s in the interval (0, 1):

fﬂ( W (. 8) {0’ SEk 24)
n f)!-."S Kk 'mk.ns s = .
i ! Jn+12(°‘k,n) ., J=k.

A Complete Twe-Dimensional Orthonormal Set over the
Rectangle s <s<h, et sd

Let {¢;(s)} be a complete orthonormal set over g < s< b, and let
{¢; (1)} be a complete orthonormal set over ¢ £ # £ 4. Then, we claim
that the set ¢,(s)¢r, (), ¢, (I,(1), ..., () (8), .. is a complete
two-dimensional orthonormal set over the rectanglea < s< b, c <7 < d.

The fact that the sequence of two-dimensional functions {¢,(s)¢ (1}
is an orthonormal set follows readily by integrating over the rectangle.
The completeness is proved by showing that every continuous function
F{s, t) with finite norm ||F||, whose Fourier coefficients with respect
to the set {¢;(s),(£)} are all zero vanishes identically over the rectangle.

For details on the results and ideas of this entire section, the reader
is referred to [3, 19].

7.2. FUNDAMENTAL PROPERTIES OF EIGENVALUES AND
EIGENFUNCTIONS FOR SYMMETRIC KERNELS

We have discussed the eigenvalues and eigenfunctions for integral
equations in the previous chapters. In Chapters 2 and 4, we found that
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the eigenvalues of an integral equation are the zeros of certain determi-
nants. It may happen that no such zeros exist, so that the kernel has no
eigenvalues. There are many kernels for which there are no eigenvalues.
Congider, for example, the homogeneous equation (cf. Exercise 3,
Chapter 2)

n 2n
g(s) = ;Lf(sinscosz)g(z)dr - A(sins)jg(r)cosrdr. (1)
o ]

Its solution must clearly be of the form g(s)= A4sins. Substituting
this in (t) yields

2z
Asins = A(sins)_l- A(sintcost)dt = 0.
1]

Thus, the kernel K(s,¢)=sinscost (0<s<2n, 0<¢<2n) has no
eigenvalues. For a symmetric kernel that is nonnull (i.e., that is not
identically zero), the above phenomenon cannot occur. Indeed, a
symmetric kernel possesses at least one eigenvalue. The proof is briefly
discussed in Section 7.8.

An eigenvalue is simple if there is only one corresponding eigen-
function, otherwise the eigenvalues are degenerate. The spectrum of the
kernel K is the set of all its eigenvalues. In this terminology, the above
assumption states that the spectrum of a symmetric kernel is never empty.

The following are some important properties of the symmetric
integral equations

A f K(s,)g() dt = f(5), or AKg =71, K(s, 1) = K*(1,5). (2)

1. The eigenvalues of a symmetric kernel are real. Let 2 and ¢(s)
be an eigenvalue and a corresponding eigenfunction of the kernel
K(s, t}. This means

$(s) — AKPp(s) = 0. (3)

Multiply (3) by ¢*(s) and integrate with respect to s from a to b and
derive the relation

i (s))* — A(K$, ) =0

or

A= 1o (K. 9) . (4)
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Since both the numerator and denominator are real, we have the
required result.

2. Theeigenfunctions of a symmetric kernel, corresponding to different
eigenvalues, are orthogonal. If ¢, and ¢, are eigenfunctions correspend-
ing, respectively, to the eigenvalues 4, and A,, we have

‘f’i_AlK‘bi:O, ¢2—12K¢2=0‘ (5)

Since A, is real, the second equation in (5) may be written as
¢¥— A, K*¢,* =0. Then, by suitable multiplication and integration
it follows that

hda L[ [ 62 K(s, 0061 (2) dr s

—[[ $1K* 5,06, ) dids] = (a=2)(B1, 8. (©)
But K(s, 1) = K*(, 5), and the left side vanishes identically, and because
Ay #= A5, the right side becomes (¢, p,)=0.

3. The multiplicity of any nonzerc eigenvalue is finite for every
symmetric kernel for which {f|K(s, )|* dsde is finite. Let the functions
b1108), 2,08, ..., b, (8) ... be the linearly independent eigenfunctions
which correspond to a nonzero eigenvalue A. By the Gram-Schmidt
procedure, we can find linear combinations of these functions which
form an orthonormal system {u,,(s)}. Then, the corresponding complex
conjugate systern {u,,;*} also forms an orthonormal system. Let

K(S, r) ~ Z a; HIA* (t) »
i
a = [ K(s,0ua () de = 47" uy(s)

be the series associated with the kernel K{s,1) for a fixed 5. Applying
Bessel’s inequality to this series, we have

[ 1K D2 dr = 3 (7 ()12,
;
which, when integrated with respect to s, yields

“‘ |K(s, )2 dsdt > T (A71)* . 7
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The right side of (7) is m(A™')?, where m is the multiplicity of A. Since
the left side is finite, it follows that m is finite,

4. The sequence of eigenfunctions of a symmetric kernel can be made
orthonormal. Suppose that, corresponding to a certain eigenvalue,
there are m linearly independent eigenfunctions. In view of the linearity
of the integral operator, every linear combination of these functions is
also an eigenfunction. Thus, by the Gram-Schmidt procedure, we can
get equally numerous eigenfunctions which are orthonormal.

On the other hand, for different eigenvalues, the corresponding
eigenfunctions are orthogonal and can be readily normalized. Combining
these two facts, we have the proof of the above property.

5. The eigenvalues of a symmetric %,-kernel form a finite or an
infinite sequence {4,} with no finite limit point. If we include each eigen-
value in the sequence a number of times equal to its multiplicity, then

< —1y2 2
ﬂ;(»‘m ) £”|K(s,:)| dsdr . (8)

Let {#,(5)} be the orthonormal eigenfunctions corresponding to
different (nonzero) eigenvalues A,. Then, proceeding as in the proof of
the property 3 and applying the Bessel inequality, we have

Z(if_])2 < _U |K(s, 8)|? dsdt < oo .

Hence, if there exists an enumerable infinity of 4, then we must have
3.7 (A4, 1% < oo. It Tollows that lim(1/4,)— 0 and cc is the only limit
point of the eigenvalues.

6. The set of eigenvalues of the second iterated kernel coincide with
the set of squares of the eigenvalues of the given kernel.

Note that the symmetry of the kernel shall not be assumed to prove
this result.

Let A be an eigenvalue of K with corresponding eigenfunction ¢ (s),
that is, (f— AK)}¢ = 0, where [ is the identity operator. When we operate
on both sides of this equation with the operator (/+ AK), we obtain
(I—A2KH¢p=0o0r

$6) - 1 [ Kr(s ¢ dt =0, ©

which proves that A2 is an eigenvalue of the kernel K, (s, £).
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Conversely, let 4= A% be an eigenvalue of the kernel K,(s,7), with
¢ (s) as the corresponding eigenfunction. Then, (/- A2 K¢ =0 or

(T—AK)(I+AK)$ = 0. (10)

If 1 is an eigenvalue of K, then the above property is proved. If not,
let us set ({+AK)¢p=4¢"(s) in (10) and obtain (/—AK)¢$'(s)=0.
Since we have assumed that A is not an eigenvalue of X, it follows that
¢’ () =0, or equivalently (1 +2K)¢ =0. Thus, —1 is an eigenvalue
of the kernel X and the above property is proved.

We can extend the above result to the sth iterate. The set of eigenvalues
of the kernel K, (s, !) coincide with the set of nth powers of the eigen-
values of the kernel K(s,1).

7. If A, is the smallest eigenvalue of the kernel K, then

1|2,| = max[|(Ke, $)//4]]
max[| [ | KGs, 060 ¢*)dedsl/|p]] (1)

or equivalently,

1] = max|(Ké,d)|, | =1. (12)

This maximum value is attained when ¢(s) is an eigenfunction of the
symmetric #,-kernel corresponding to the smallest eigenvalue. For
proof, see Section 7.8.

7.3. EXPANSION IN EIGENFUNCTIONS AND BILINEAR FORM

We now discuss the results concerning the expansion of a symmetric
kernel and of functions represented in a certain sense by the kernel,
in terms of its eigenfunctions and the eigenvalues. Recall that we meet a
similar situation when we deal with a Hermitian matrix. For instance,
if 4 is a Hermitian matrix, then there is a unitary matrix ¥ such that
/' AU is diagonal. This means that, by transforming to an ortho-
normal basis of the vector space consisting of the eigenfunctions of A4,
the matrix representing the operator 4 becomes diagonal.

Let K(s5,1) be a nonnull, symmetric kernel which has a finite or an
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infinite number of eigenvalues (always real and nonzero). We order
them in the sequence
j’la)*z’-“s‘q'm-“ (l)

in such a way that each eigenvalue is repeated as many times as its
multiplicity,. We further agree to denumerate these eigenvalues in the
order that corresponds to their absclute values, i.e.,

0 < [A] € (4] € - < |A4] € |Aedd < .
Let
qbl (S), ‘;62, (S), ey ¢’n (S)s L] (2)

be the sequence of eigenfunctions corresponding to the eigenvalues
given by the sequence (1) and arranged in such a way that they are no
longer repeated and are linearly independent in each group corresponding
to the same eigenvalue. Thus, to each eigenvalue A, in (1) there corre-
sponds just one eigenfunction ¢, (5) in (2). According to the property 4
of the previous section, we assume that they have been orthonormalized.

Now, we have assumed that a symmetric %,-kernel has at least one
eigenvalue, say 4;. Then ¢ (s) is the corresponding eigenfunction.
It follows that the “truncated” symmetric kernel

KD(,0) = K(s,0 = [0 $:1*(D/A4]

is nonnull and it will also have at least one eigenvalue 4, (we choose the
smallest if there are more) with corresponding normalized eigenfunction
¢, (5). The function ¢, (5) # ¢,(s) even if A, = A,, since

jK‘”(s, t)q.’);(t) dr = JK(S, ¢, () dt

e LY

0@ 66 _

0.
A4 Ay

Similarly, the third truncated kernel

$2(5) P, (1)
A,

2 *
Koy~ 3 B0
k=1 k

KOs, 1) = KD(s,1)
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gives the third eigenvalue A, and eigenfunction ¢,(5). Continuing in
this way, we end up with two possibilities: either this process terminates
after n steps, that is, K®*"{s,7) = 0, and the kernel K (s, 1)is a degenerate
kernel,

K(s,8) = Z Py (S)fk*(t) i 3)
k=1 &

or the process can be continued indefinitely and there are an infinite
number of eigenvalues and eigenfunctions.

Note that we have denoted the least eigenvalue and the corresponding
eigenfunction of K™(s,1) as A, and ¢,, which are the nth eigenvalue
and the nth eigenfunction in the sequences (1) and (2). This will be
justified by Theorem 2 below.

We shall examing in the next section whether the bilinear form (3) is
valid for the case when the kernel K(s, ) has infinite eigenvalues and
eigenfunctions. The following two theorems, however, follow readily.

Thaorem 1. Let the sequence {¢,(s)} be all the eigenfunctions of a
symmetric %,-kernel K(s,#), with {1,} as the corresponding eigen-

values. Then, the series
ﬁﬂmwﬁ
,1 2
r=1 a

converges and its sum is bounded by C,?, which is an upper bound
of the integral

j |K2(s, )| dr .

Proof. This result is an immediate consequence of Bessel’s inequality.
Indeed, the Fourier coefficients a, of the function K(s, £}, with fixed s,
with respect to the orthonormal system {¢,*(s)} are

a, = [ K(s, 9,0 dt = ¢, (), -

Thus, applying Bessel’s inequality, we have

bl 2
> W"ﬁ)' < [ K07 de < €2 (4)
r=1 "
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Theorem 2. Let the sequence ¢,(s) be all the eigenfunctions of a
symmetric kernel K(s, ), with {1,} as the corresponding eigenvalues.
Then, the truncated kernel

th+1 — . (lbm(s) ‘»bm* (t)
KOs ) = K(s, 1) _,.,Zl e )

Wt

has the eigenvalues 4,,,4,4,,..., to which correspond the eigen-
functions ¢, (5), ¢.+2(5),.... The kernel X“*V (s r} has no other
eigenvalues or eigenfunctions,

Proof. (a) Observe that the integral equation

é(s) — ;LIK("“)(S, N di =0 (6)
is equivalent to
: > Puls) B
d(s) — AJK(S, t)()’J(f)a’H—i"Z1 i (¢, 0,) = 0. (7)

If, on the left side of this equation we set A=4; and ¢(s) = ¢;(s)
J = n+1, then, in view of the orthogonality condition, we have

$,(5) — &; [ Kis, ¢yt = 0. (8)

This means that ¢, and 4, for j > n+ 1 are the eigenfunctions and eigen-
values of the kernel K¢'* (s, 1).

(b) Let i and ¢(s) be an eigenvalue and eigenfunction of the kernel
K@ D(g ) so that

#6) —Kpe + 1> 209, = 0. ©)

Taking the scalar product of (9) with ¢,(s), / <, we obtain

where we have used the orthonormality of the ¢ . But (K¢, ¢ ;) = (¢, K¢ ;)
= 1,7 (¢, ¢;). Hence, (10) becomes

(@, ¢) + (A {(¢.¢) — (.0} = ($,0) = 0. (1)

Thereby, the last term in the left side of equation (9) vanishes and we
are left with
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$()— 2 [ Kis, 0oy dt =0, (12)

which means that 1 and ¢(s) are eigenvalue and eigenfunction of the
kernel K(s,¢) and that ¢ # ¢;, / < n. Indeed, ¢ is orthogonal to all ¢,
j<n, and ¢(s5) and A are necessarily contained in the sequences
{h(8)} and {A}, & = n+ 1, respectively,

In light of the above two theorems, we can easily conclude that, if the
symmetric kernel K has only a finite number of eigenvalues, then it is
degenerate. The proof follows by observing that X' V(s 1) then has
no eigenvalues and hence it must be null. Therefore,

2 hulS) P (1)
K(s, 1) =Zl Pt

In Chapter 2, we found that every degenerate kernel has only a finite
number of eigenvalues. Combining these two results, we have the
following theorem.

Thaeorem 3. A necessary and sufficient condition for a symmetric
Z,kernel to be degenerate is that it have a finite number of eigenvalues.

7.4 HILBERT-SCHMIDT THEOREM AND SOME IMMEDIATE
CONSEQUENCES

The pivotal result in the theory of symmetric integral equations is
embodied in the following theorem.

Hilbert-Schmidt Theorem. If f(s) can be written in the form

A = [ Ks,nh@ dr, (1)

where K(s,1) is a symmetric .%;-kernel and A7) is an 2,-function,
then f(s) can be expanded in an absolutely and uniformly convergent
Fourier series with respect to the orthonormal system of eigenfunctions
(7.3.2) of the kernel K
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1) = LAGE.  f= ).

The Fourier coefficients of the function f{s) are related to the Fourier
coefficients k, of the function A{s) by the relations

fo=holdy,  hy=(h ), ()
where A, are the eigenvalues (7.3.1) of the kernel K.

Proof. The Fourier coefficients of the function f(s) with respect to
the orthonormal system {¢,(s}} are

fo={(fi) = (Khp) = (WK} = 4,7 () = 4, ' 1y,

where we have used the self-adjoint property of the operator as well as
the relation 4, K¢, = ¢,. Thus, the Fourier series for f(s) is

a

ul’l”

The remainder term for this series can be estimated as follows:

:m(s)lz L, L )

Ss) ~ Z Ja®als) = f.fJ OF 3

2
k=n+l k=n+1 k=n+1 )'k
a+p o 2
" ()
< ffﬁz Sy C)
k=n+1 =1 M

From the relation (7.3.4), we find that the above series is bounded. Also,
because A(s) is an F,-function, the series 3%, 42 is convergent and
the partial sum >, *t2, h.? can be made arbitrarily small. Therefore,
the series (3) converges absolutely and uniformly.
It remains to be shown that the series (3) converges to f(s) in the
mean. To this end, let us denote its partial sum as
R

Uals) = Z 7 6al) 5)

m= l

and estimate the value of ||f(s)—ljl,,(s)||‘ Now,

N_‘~ h
) = () = Kh= > 2" $uls) ®)
m=] M

(continued)
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= (A
= Ki - ,,,Zz. (w—ﬁ"’) bul®) = K" 08, (6)

where K***1) is the truncated kernel as defined in the previous section.
From (6), we obtain

17(5) = ()42 = K@+ DR = (K@D p, RO+ g
= (hKOTOK" Dh = (K, ), (D)

where we have used the self-adjointness of the kernel K**1) and also
the relation K"+ D K1 = g, =+ 1 [f we use property 6 of Section 7.2
and Theorem 2 of Section 7.3, we find that the least eigenvalue of the
kernel K,@*' is equal to A,,,2 Furthermere, according to property
7 of Section 7.2, we have

1A, 1 = max[(h, K, D )ih,B)] , ®)

where we have omitted the modulus sign from the scalar product
(h, K,"* "V h), as it is a positive quantity, Combining (7) and (8), we have

llf(S) - %(S)!!z = (h, Kz("H]h) £ (hsh)f'r'lnﬂz-
Since A, 4, — oo, we find that || f{s)— o, (s}]| —0 as n— o0,

Finally, we use the relation

L=yl < W=l + l¥.—¥), )

where o is the limit of the series with partial sum ¥,, to prove that
J=1t. The first term on the right side of (9) tends to zero, as proved
above. To prove that the second term also tends to zero, we gbserve that,
since the series (3) converges uniformly, we have, for an arbitrarily
small and positive &,

i (9) — ¥ ()| <2,

when # is sufficiently large. Hence, ||i,(s)—¢(s)| < e(b—a)"* and the
result follows.

Remark. Note that we assumed neither the convergence of the Fourier
series #1(s) nor the completeness of the orthonormal system. We have
merely used the fact that & is an #,-function.

An immediate consequence of the Hilbert-Schmidt theorem is the
bilinear form of the type (7.3.3). Indeed, by definition,
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Kals,) = [ K, 0) Kpo (6,0 dx,  m=23,.., (10)

which is of the form (1) with k(s)=K,,_,(s5,7); ¢ fixed. The Fourier
coefficient a, (1) of K, (s, ) with respect to the system of eigenfunctions

{dr(5)} of K(s, 0} is
a() = | Kuls. 0@ ds = 177920

It follows from the above theorem that all the iterated kernels K, (s, 1),
m =2, of a symmetric .#,-kernel can be represented by the absolutely
and uniformly convergent series

Ka(s, 1) = kz_:l A" (S * (D) . (11

By setting s = ¢ in (11) and integrating from a to b, we obtain
A7 = | K,{s,8)ds = A, , 12
A= [ Kalss) (12)

where 4, is the trace of the iterated kernel K,,.
Next, we apply the Riesz—Fischer theorem and find from (12) with
m =2 that the series

Z ¢’k(s).¢’k*(l) (13)

k=1 Ax

converges in the mean to a symmetric %,-kernel X(s, 7), which, con-
sidered as a Fredholm kernel, has precisely the sequence of numbers
{4,} as eigenvalues.

Definite Kernels and Mercer's Theorem

A symmetric %,-kernel K is said to be nounegative-definite if
(K¢, ¢) = 0 for every &,-function ¢; furthermore, X is positive-definite
if, inaddition, (K¢, ¢) = Oimplies ¢ is null. The definitions of nonpositive-
definite and negative-definite symmetric kernels follows in an obvious
manner. A symmetric kernel that does not fall into any of these four
categories is called indefinite.
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The following theorem is an immediate consequence of the Hilbert—
Schmidt theorem,

Theorem. A nennull, symmetric ¥,-kernel K is nonnegative if and
only if all its eigenvalues are positive ; it is positive-definite if and only if
the above condition is satisfied and, in addition, some (and therefore
every) full orthonormat system of eigenfunctions of K is complete.

Proof. (a) From the Hilbert-Schmidt theorem, we have

(@ 40 $u(s) . (14)

Aoy

fis) = K¢ = Z
n=1
The result of taking the inner product of (14) with ¢ is
RS XA
{K¢’¢)_;T' (15)

Hence, if all 2, > 0, we have (K¢, ¢) = 0 for all ¢. In addition, if any 2,
is negative, then (K¢,,¢,) =4, ! <0. Thereby, the first part of the
theorem is proved.

{(b) Let X be nonnegative-definite. From (15), it follows that (K¢, ¢}
=0 if and only if {¢,¢,) =0 for all n. Therefore, K will be positive-
definite if and only if the vanishing of (¢, ¢,) for all » implies ¢ =0.
Using the criterion (d) for the completeness of an orthonormal system
as given in Section 7.1, we find that the second part of the theorem is
thereby proved.

Finally, we state without proof the following result, which gives the
precise conditions for the bilinear form (7.3.3) to be extended to an
infinite series.

Mearcer's Theorem. If a nonnull, symmetric %,-kernel is quasi-
definite (that is, when all but a finite number of eigenvalues are of one
sign) and continuous, then the series

I (16)

is convergent and
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Kis,0 = Z w , (17

the series being uniformly and absolutely convergent.
Note that the continuity of the kernel is an absolutely essential
condition for the theorem to be true.

7.5. SOLUTION OF A SYMMETRIC INTEGRAL EQUATION

Let us use the Hilbert—Schmidt theorem to find an explicit solution
of the inhomogeneous Fredholm integral equation of the second kind

g(s) = f(9) + 4 [ K(s,0g00) M

with a symmetric #,-kernel. It is assumed that A is not an eigenvalue
and that all the eigenvalues and eigenfunctions of the kernel K(s, )
are known and arranged as in (7.3.1) and (7.3.2), respectively. The first
thing we observe is that the function g(s)—f{s) has an integral repre-
sentation of the form (7.4.1). As such, we can use the Hilbert—-Schmidt
theorem and write

o

glsy—fls) = k;l i (5) (2)
where
& = J Eg(s) — /] d* (9 ds = g — /i (3)
with
6= [ 903 ds,  fi= [ ds. @
Furthermore, the relation (7.4.2) gives
[ Agkfik . (5)
Since A is not an eigenvalue, from (3) and (5) we have
e = A& —D1S, g = [AfA—D] A (6)

Substituting the value of ¢, from (6) into (2), we derive the solution of
the integral equation (1) in terms of an absolutely and uniformly con-
vergent series:
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Laa}

g() = fis) + A Z

() (M

or

g(s) = f(s) — A}j £y de . (8)

Thus, the resolvent kernel I'(s, ¢; 1) can be expressed by the series

T(s,1:0) = z ‘ﬁ”‘((j: %)(I) )

from which it follows that, the singular points of the resolvent kernel
I" corresponding to a symmetric #,-kernel are simple peles and every
pole is an eigenvalue of the kernel.

The above discussion is based on the assumption that 1 is not an
eigenvalue. if it is an eigenvalue, then it necessarily occurs in the sequence
{4} and perhaps is repeated several times. Let A= 4, =4,,, = =4
For the indices k, different from m,m+1,...,m’, the coeflicients ¢,

and g, in (6) are well-defined. However, if k is equal to one of these
numbers, then f, = 0. This means that the integral equation (1) is soluble
if, and only if, the function f{(s) is orthogonal to the eigenfunctions
Drs s 19002 G- When this condition is satisfied, the solution is given
by formula (7), where the coefficients with the indeterminate form 6/0
have to be taken as arbitrary numbers,

Finally, we attempt to sclve the Fredholm integral equation of the
first kind

£ = [ Ksng® dr, (10)
where the kernel K (s, 1) is a symmetric %,-kernel. We again assume that
the sequence of eigenvalues {i,} and corresponding eigenfunctions
{¢,(5)} are known and arranged as in (7.3.1) and (7.3.2).

From relation {7.4.2), we have
Jo = gl or g = Ao - (1D

Because of the Riesz-Fischer theorem, there are only two possibilities:
either (a) the infinite series

AT 12)
k=1
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diverges and equation (10) has no solution, or (b) the series (12) con-
verges and there is a unique %,-function g(s) which is the solution
of equation (10). This solution can be evaluated by taking the limit
in the mean

g(s) = lim "Elzkfk ) . (13)

e R

7.6. EXAMPLES

Example 1. Solve the symmetric integral equation
1
g(s) = s+ 1 + [ e+ Pyg dr . 0
Zi

The eigenvalues and eigenfunctions for this symmetric kernel can be
found by the method of Chapter 2 (see Example 4 in Section 2.2):

i =42, ‘ﬁ'i(s):(%\/é)é‘,

o @
A B OB (NN

S

1

_[(t2+2t+1)(§\/5)tdt - 2./6,
-1‘ ) . (3)
£ = j(r2+2x+ DEJT0) £ dr = (8/15)/10 .

Thus,
_@E(L 2\ BAHYI0f N 2
g6 = (3!2)—1(5‘/6)” W(i‘/m)s rerh
or
g(® = (25/9)s* + 65+ 1. 4)

Note that, in equation (1), 4 = [, which is not an eigenvalue.

Example 2. Solve the symmetric integral equation
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1
g =s5*+1+3% f (st+52 ) g(s) ds . (5)
21

Here, A =4, =3, so we shall have the indeterminate form 0/0 in
one of the coefficients. Fortunately, the function (s> + 1) is orthogonal
to the eigenfunction (Ji\/ 6)s, which corresponds to the eigenvalue 3.
Following the procedure of Section 7.5, we obtain

f,=0, fi= j(rul)@\/ﬁnﬁ dt = 8/15/10. (6

Thus, the required solution is

L3 @10 (1, ,
g(s) = 36D =0R) (5\/10)3 +os+50+1

or
gs) =58> +es+ 1, (N

where ¢ is an arbitrary constant,
Example 3. Solve the symmetric integral equation
9() = f5) + 1 | k(s)k(Dg () dr . ®
If we write
jk(s)k(t)k(z) dt = U[k(t)]zdt}k(s),

we observe that

Ay =1 / J' [k()]? dt )
is an eigenvalue. The corresponding normalized eigenfunction is
10 = k@ /| [ Le(o1* e} (10)
The coefficient £, has the value
fo= (| @1 d % [ sk ar (n

Thus, for A £ 4,, the selution is
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g(8) = [Af1/(A — D] ¢1(5) + 1(5)

or
g = (4 [fOr@ ds/{[1-4 [ k@P &5}) + f . (12)
On the other hand, if
A=, = 1/[ k()] ds
then f(s) must be orthogonal to ¢,(s), and in that case the solution is
g(s) = f(s) + ck(s), ¢ an arbitrary constant . (13)

Example 4. Solve the symmetric Fredholm integral equation of the
first kind

1
[ K609 at = 1) a9
o
where
X s(1—-1), s<t, s
(8) = {(1-5)1¢, 8>t ()

Recall that in Example 2 of Section 5.3 we proved that the boundary
value problem

2
‘L—yﬂy:o, y(©0) = y(1) = 0 (16)
5

is equivalent to the homogeneous equation

1
9() = 4 [ K(s,ng(dr. (17)

The eigenvalues of the system (16) are
iy = w?, 1 = (2m)?, A= ()2, ..,
and the corresponding normalized eigenfunctions are
J2sinms, . /2sin2ms,  /2sin3ms, ... (18)

Therefore,



156 7 / SYMMETRIC KERNELS

fo = V2 [ Ginkno) S dt (19)
o

and the integral equation (14) has a solution of class &, if and only if
the infinite series

2IEA =nt ) (D)
k=1 k=1
CONverges.

Example 5. Solve Poisson’s integral equation

2

_1-p® ¢ (o) du
S = 27 jl —2p[cos(@—a)] + p*°

a

08 < 2n; D<p<l. (20)
Here, the symmetric kernel X(0, ) can be expanded to give

K(8,a) = [(1—-p*)/2x] {1 — 2p[cos(@—u)] + p*}~!
= (1/2) + (1/7) f] prcos [k(0—w)] . 1)
k=1

Tt is a matter of simple verification that, by using the expansion (21}, one
gets [F K0, o) dx =1, or

2

f K@, 0)(2n) % dox = (2n) %,

4]

which means that 15 = 1, ¢4(s) = (2r)~%. Similarly, using the formula
2
fK(G, ) S nadr = w8, n=1,23..,
sin sin
0
we have

Appmy =Ay = p7%; o185} = n”%cosks ;
(22)
$x(5) = 7~ %sinks, k=123,...
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We can now readily evaluate the coefficients f; in the series (7.5.12),
and it emerges that the integral equation has an %;-solution if and only
if the infinite series

i a2 +b,?
2n 4
Ha= | P

where

2n in
a, = (1/n) ff(ﬂ)cosnﬂd(} . b, = (1}m) jf{ﬂ) sinn@ d8 (21
0 0

CONVErges.

7.7. APPROXIMATION OF A GENERAL 2;-KERNEL (NOT
NECESSARILY SYMMETRIC) BY A SEPARABLE KERNEL

In Section 2.5, we approximated an analytic kernel s(e®—1) by a
separable kernel. In this section, we show that we can approximate every
#;-kernel in the mean by a separable kernel. The proof rests on the
availability of a two-dimensional complete orthonormal set as discussed
at the end of Section 7.1.

Let K(s, {) be an %#,-kernel and let {%;{s)} be an arbitrary, complete,
orthonormal set over @ < s < b. Then, the set {; (s} *(1)} isacomplete
orthonormal set over the square ¢ < 5,7 < . The Fourier expansion
of the kernel K(s,¢) in this set is

K= 3 Kyh@ur0, M)
where the K;; are the Fourier coefficients
Ky, = j J' K(s, D ()¢ ,(2) dsdt . )
Parseval’s identity gives
[[ .o asar = 31k, 3

Now, if we define a separable kernel &(s, f) as
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4]
k(s,t) = Y K&y 20,
hi=1
we find after a simple calculation that

aa
[{ Ik —kisn dsde = 5 |17 @
if=n+1
But the sum in (4) can be made as small as we desire by choosing a
sufficiently large » because the series (3) is convergent by hypothesis,
This proves our assertion.

7.8. THE OPERATOR METHOD IN THE THEORY OF
INTEGRAL EQUATIONS

In this section, we shall show briefly how we can treat a Fredholm
integral equation from the stand point of present-day functional analysis.
We have already analyzed the properties of a function space in Section
7.1. We now note that the transformation or operator X,

Ko = [ K(s09() dr, )
is linear, inasmuch as

K¢ +¢:) = K¢+ K¢y, K(ag) = 2Ké .

The operator K is called bounded il |K¢| < M ||¢ i for an &£,-kernel
K(s,1), an &p-function ¢, and a constant M. The norm | K| of K is
defined as

[KY = Lub.(|Kgl/lg])
r
IK1=1ub.|Kg{, gl =1, (2)

the two characterizations being equivalent. A transformation K is
continuous in an $,-space if, whenever {¢,} is a sequence in the domain
of K with limit ¢, then K¢, —~ K¢. A transformation is continuous in
the entire domain of K if it is continuous at every point therein. Fortun-
ately, a linear transformation is continuous if it is bounded and vice versa,
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and it is easy to show that the operator K as defined above is bounded,
Indeed, by starting with the relation

V) = K = [ K(s,0 b dr,

we have

WO = | | Ksno@dil* < [ 1KG 017 dr [ |9 de

or
WO < 617 [ 1K (s, di

Another integration yields

bl = 1K < Il [[ [ 1K 02 dsde] %,
which implies that

K| < [” |K(s, 0|2 dsde] %, 3)

as desired.

A rather important concept in the theory of linear operators is the
concept of complete continuity. An operator is described as completely
continuous if it transforms any bounded set into a compact set (a set .S
of elements ¢ is called compact if a subsequence having a limit can be
extracted from any sequence of elements of §). Obviously, a completely
continuous operator is continuous {and hence bounded), but the converse
is not true. Furthermore, any bounded operator K whose range is finite-
dimensional is completely continuous because it transforms a bounded
set in ¥, (a, b) into a bounded finite-dimensional set which is necessarily
compact. Many of the integral operators that arise in applications are
completely continuous. For instance, a separable kernel K(s, 1),

A
K(s,1) = 3 ai(9) b, (1),

i=1

where a;(s) and 5;(#) are % ,-functions, is completely continuous, as can
be proved as follows. Indeed, for each %,-function

kg = [[E atrtg]d = ¥ qal,

that is, the range of K is a finite-dimensional subspace of %, (a, b).
In addition,
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L L
IKgll = H‘Zl'v”sai(-?)“ s 21 CARIEA
i= i=

< ¥ lal  1olg )] dr @

r
Applying the Schwarz inequality in (4), we have
|Kgi < Migi, &)

where M =73;7 |a;i 1&;]. This means that K is a bounded operator
with finite-dimensional range and hence is completely continuous.

We can use this result to prove that an .%,-kernel K{s, 1) is completely
continuous. We need only the theorem that, if K can be approximated
in norm by a completely continuous operator, then A is completely
continuous. If we assume this theorem, then our contention is proved
because an #,-kernel can always be approximated by separable kernels,
as shown in the previous section.

Next, we prove the interesting result that the norms of K and of
its adjoint K* are equal. To this end, we appeal to the relation {(7.1.12):

(K, ) = (&, K*¢), (6)

which helds for each pair of #,-functions ¢, . Substituting = K¢
and applying the Schwarz inequality, we obtain

(Ko, Kp) = (9, K* K} < ||9|| [K*KS] ,

where we have used the fact that (K¢, K¢) is nonnegative real number.
Hence,

LK™ < |K*) 4Kl or LK < K*[ 1] -

This last inequality implies that |K|| < |K*|. The opposite inequality
is obtained by setting ¢ = K* in (6).

In Section 7.2, we stated the property that the reciprocal of the
modulus of the ¢igenvalue with the smallest modulus for a symmetric
#y-kernel K is equal to the maximum value of [(K¢, ¢)| with ¢l = L,
This property can be proved as follows. Indeed, an upper bound for the
reciprocal of the eigenvalues is immediately available because, for the
gigenvalue problem AK¢ = ¢,

(Ko, 9) = (1{) (¢, ¢) = (D) |6]*,
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which implies

) o1* = (Kb, ¢) < | K¢ 1o] < | K| o> (M
From (3) and (7), we derive an upper bound
A < [ [ ke, 07 dsar] . )

When the #,-kernel is also symmetric, we can use the following result
from the theory of operators: If K is a symmetric and completely
continuous operator, at least one of the numbers K| or —|K]| is
the reciprocal of an eigenvalue of K and no other eigenvalue of K has
smaller absolute value.

By recalling the definition of {K| and the fact that a symmetric
% ,-kernel generates a completely continuous operator, we have proved
property 7 of Section 7.2. In the process, we have also proved the
existence of an eigenvalue,

Suppose we have found the first eigenvalue A, and corresponding
eigenfunction ¢, in the sequences (7.3.1) and (7.3.2). To find the next
eigenvalue 2, and the correspoanding eigenfunction ¢,, we shorten the
kernel K by subtracting the factor ¢, ¢, */i; from it. Then, from
Theorem 2 of Section 7.3, we find that the kernel K'® = [K— (¢, ¢,%)/2,]
satisfies all the requirements of a symmetric #,-kernel. Following the
above discussion, we find that at least one of the numbers |K,| or
— ||K;|| is the reciprocal of A,. This process is continued until all the
eigenvalues and eigenfunctions are derived. The only drawback in this
process is that, to find the (r+ )th eigenvalue, one has to find the first
n eigenvalues. This situation is remedied by the so-called maximum-
minimum pringiple, and this is not on our agenda. The reader is referred
to Courant and Hilbert [4] for this discussion.

7.9. RAYLEIGH-RITZ METHOD FOR FINDING THE FIRST
EIGENVALUE

Let us take a real, nonnegative, and symmetric %,-kernel K. We have
found that the smallest eigenvalue A, is characterized by the extremal
(or variational) principle
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Vi, = max(K¢,¢)., ol =1. (N

The Rayleigh-Ritz method rests on selecting a special class of trial
functions of the form ¢ =32, % y;(s), where {if;(x)} is a suitably
chosen set of linearly independent functions and {x;} are real numbers.
The relation (1) implies that, to obtain a close approximation for 4,
we must maximize the functicn

%9.6) = (K[ S 2], ¥ ai(@) = Kasn. @
subject to
“gl(aiwi)nziélcmaiak -1, 3
where
K= (Kindhd = G K85 o = Wl = (), (9)

are known quantities, Thereby, we have transformed the extremal
problem (1) into an extremal problem in the advanced calculus of
several variables x, ..., a,. We use the method of Lagrange multipliers
and set

1=

D =_k I(Kik oy 0 — OCH 0 0) (5)

where ¢ is an undetermined coefficient. The extremal values of 2; are
determined from the equations 0®/da; = 0;

] ]
Z Kikﬁk—dzcikoc;‘:{), f= l,...,n. (6)
k=1 i=1

This linear and homogeneous system of equations in «,,...,q, will
have a nontrivial solution if and only if the determinant

K —ocy Kip—oey; - Ky,—00y,
=0. ()
Knl —0Cy Kn2_gcn2 K,',,—O'C,m

Also note that, by multiplying (6) by «; and summing on i, one gbtains

G= (K(xb’ ¢)

The determinant (7), when expanded, yields an nth-degree polynomial
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in ¢ which can be shown to have # real, nonnegative but not necessarily
distinct roots. Let o, be the maximum of these roots. Then, from the
above discussion, we infer that &, € 1/4,. This usually gives a good
approximation to A;. When we solve the equations (6) for the vector
(x(,...,a,) with ¢ =0, and evaluate ¢ =3 ", %\, it emerges that ¢
is usually not a good approximation for ¢,.

For the particular case when the trial functions ¢,(x) are orthonormal
in the given interval, the computation is considerably simplified because
then ¢;; = ;. The relations (6) and (7) take the simple forms

Y Kpop—ow; =0, i=012..,n (8
k=1
and
Kyy—o K - K
: =0, &)
Kni KNZ Km!_a

respectively. We illustrate this method by two examples.

Example 1. Find the first eigenvalue of the integral equation

1
9()— A[ K(s,ngydt = 0, (10)
1]
where
X {st(z—:), §<t,
K(s, ) = (11}
H2-35), s>1,

which can be shown to be a positive kernel, This integral equation can be
proved to be equivalent to a simple ordinary differential equation (see
Example 2 in Section 5.3. The exact value of the smallest eigenvalue is
4.115)

To apply the Rayleigh—Ritz procedure, we take two trial functions:

¥,(s) = f2sinnms,  n=12, 12)
which are orthonormal in the interval (0, 1). Proceeding asabove, we have

Ky =2, Kn=K,=-122, Kyp=12. (13)
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The relation (9) gives for this special case
Qi) —e —1/27%

=0. 14
-1/2r* (122 -0 (19

The largest root of (14) is o=2.15/n%. Thus, 1, ~n%2.15=4.59.
By including more functions in the sequence (12), we can improve the
approximation progressively.

Exarripfe 2. Find an approximation for the smallest eigenvalue of the
positive-definite symmetric kernel

{ 5, s<t
Kis,) = (15)

t, s>t

in the basic interval (0, 1).
To use the Rayleigh-Ritz method, we take two trial functions

Vi =1, yu() =251, (16)

which are orthogonal but not orthonormal [they are Legendre poly-

nomials Py (25— 1), P, (25— 1)]. Thus,
e =1, €13 =C; =0, iy = /3,
i1 12 21 22 / Can
Kll = 1;"3, Klz = Kzl = l;"lz, Kzz == 1;"30.

Substituting (17) in (7) and evaluating the determinant, we have
6% —(13/30)0 +-(1/80) = 0. The largest root is o, = (1/60)[13 4-{124)*].
Thus, the smallest eigenvalue is A, = /g, ~ 2.4859, which compares
favorably with the exact value 2.4674.

EXERCISES

1. Show that, if (K¢, ¢) is real for all ¢, then K is a symmetric Fredholm
operator.

2. Determine the iterated kernels for the symmetric kernel

[+ 4]
K(s,8) = ¥ k™ 'sinknssinknt .
=
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3. Show that the kernel K(s,#), 05,4 <1,

s(l-8, s<t,

K(s,n =
(1) {t(l—s), s>,

has the bilinear form

sin knssinknt
K(s,p=12 z (kn:)z .

4. Use the result in Exercise 3 and show that
=1
55
5. Consider the eigenvalue problem
L
9() =2 [ (1=ls=t))g® dt .
-1

Differentiate under the integral sign to obtain the corresponding
differential equation and boundary conditions. Show that the kernel of
this integral equation is positive.

6. Determine the cigenvalues and eigenfunctions of the symmetric
kernel K{s, ) = min(s, £) in the basic interval 0 < 5,1 < 1.

7. Use the Hilbert-Schmidt theorem to solve the symmetric integral
equations as given in Examples 1-3 and 6 in Section 2.2,

8. Apply the Gram-Schmidt process to orthogonalize 1, s, 5%, s* in the
interval —1 < 5 < 1. Use this result to find the elgenvalues and eigen-
functions of the symmetric kernel K{(s,#) = 1+st+s* 2+ £,

9. Consider the kernel K{s, ) =log{1 —cos(s—#], 0 € 5, < 2r. Show
that (a) it is a symmetric 22,-kernel; (b) the following holds:

—(log2) + 2log[t —e'77]

aD
COS HSCOS f m §§in I
togay 23 o, S s

and (c) its eigenvalues are 1, = — 1/(2xlog2), 4, =—n/2r, n=1,2, ..,

K(s,0
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with eigenfunctions ¢q(s) = C, ¢,(5)= Acosns+ Bsinns, where 4, B,
and C are constants.

10. By combining Sections 5.5 and 7.4, show that the eigenfunctions
of any self-adjoint differential system of the second order form a
complete set.

11. Prove that, for a square-integrable function, the Fourier transform
preserves norms.



SINGULAR INTEGRAL CHAPTER 8
EQUATIONS

8.1. THE ABEL INTEGRAL EQUATION

An integral equation is called singular if either the range of integration
is infinite or the kernel has singularities within the range of integration.
Such equations occur rather frequently in mathematical physics and
possess very unusual properties. For instance, one of the simplest
singular integral equations is the Abel integral equation

S = [lg@is—ry1dt, O<a<l, ()
Q

which arises in the following problem in mechanics. A material point
moving under the influence of gravity along a smooth curve in a vertical
plane takes the time f(s) to move from the vertical height s to a fixed
point 0 on the curve. The problem is to find the equation of that curve.
Equation (1) with « = 12 is the integral-equation formulation of this
problem.

The integral equation (1) is readily solved by multiplying both sides
by the factor dsj(u — s)' ~* and integrating it with respect to s from 0 to u:

167
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“f(S)ds N tds gg(t)dt "
@—sy"* Ju—9'"""] (—of" @

The double integration on the right side of the above equation is so
written that first it is to be integrated in the # direction from O to s and
then the resulting single integral is to be integrated in the s direction
from 0 to u. The region of integration therefore is the triangle lying below
the diagonal s = r. We change the order of integration so that we first
integrate from s = ¢ to s = » and afterwards in the ¢ direction from ¢ =0
to £ = u. Equation {2) then becomes

u " u

f$)ds ds
JWG—JQ(f)deW- 3

t
i

{u,u}

fﬂé\
\Q
(0,0 N u —F
Figure 8.1

To evaluate the integral

u

ds
_[(u—s)“"(s— H’

4
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one sets y = (u—5)/(u— 1), and obtains

j(u—s)“_l (s—8) *ds = fy“_l(l—y)_“ dy = nfsinun ,
0

!

where we have used the value of the Eulerian beta function B(z, 1 —u)
= n/sin s, Substituting this result in (3), we have

sinam f(s) ds J’ i,

T )lu

which, when differentiated with respect to , and then changing u to ¢,
gives the required solution:

Sin T d

gt = UﬂMrWlmy )

n

The integral equation (1) is a special case of the singular integral
equation [18]

g0 dt

IO = ) ey — R

D<a<l, 0

where A(f) is a strictly monotonically increasing and differentiable
function in (g, 8), and h'(#) # 0 in this interval. To solve this, we con-
sider the integral

B () £ () due
(h(s) — ] "

and substitute for f() from (5). This gives

ff g(t) K (u) dt du
[h(w) — (O] [h(s) — h(@T ™7

which, by change of the order of integration, becomes
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5

: R (1) du
d .
J 90 ‘j (@) — ROT ThGs) = R T

a t

The inner integral is easily proved to be equal to the beta function
B{x, 1 — o). We have thus proved that

Koyfwde o [
[h(s) — k()T > sinan _[9(‘) . (©)

]

and by differentiating both sides of (6), we obtain the solution

__ sinar “c_f_J" R () f(W) du

90 = @ | [h — kT M
Similarly, the integral equation
b
ns = | Lo 0<a<l, @®)

Ay — h()T*

and a < s < b, with A{#} a monotonically increasing function, has the
solution

©)

a(0) = ﬂsin et E f[hh'(u)f(u) du

n dt @ —hH]'
t
We close this section with the remark that a Fredholm integral
equation with a kernel of the type

K(s,) = H(s,0)f|t—s1, O<u<l, (10)

where H{s, ) is a bounded function, can be transformed to a kernel
which is bounded. Tt is done by the method of iterated kernels. Indeed,
it can be shown [11, 15, 20] that, if the singular kernel has the form as
given by the relation (10), then there always exists a positive integer pg,
dependent on a, such that, for p> p,, the iterated kernel K,(s,1) is
bounded. For this reason, the kernel (10) is called weakly singular.
Note that, for this hypothesis, the condition « < | is essential. For
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the important case x = 1, the integral equation differs radically from
the equations considered in this section. Moreover, we need the notion
of Cauchy principal value for this case. But, before considering the case
e = 1, let us give some examples for the case « < 1.

8.2. EXAMPLES

Example 1.

Solve the integral equation

&

g (&) dt
(s—1)%"

1]

(0

Comparing this with integral equation (8.1.1}, we find that f{s) = s,
e = 1/2. Substituting these values in (8.1.4), there results the solution:

g(®)

1d
T dt
1d

T omdt

| 3

8
J‘(t—s)"’s‘ ds]

Example 2. Solve the integral equation

fls) =

@

gy dt
(cost — coss)’

2 4
—=(s+2H0— s)”{l
3 o
C4 W) o
* :|= il @)
T
Oga<s<bsgn. 3

Comparing (8.1.5) and (3), we see that a = 1/2, and A(f) = 1 —cos¢,
a strictly monotonically increasing function in (0, r). Substituting this
value for A(y) in (8.1.7), we have the required solution

1 d

90 = %

(sinu) f(w) du

—_— | a<t<h.
{cos u — cos t)%:l

)
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Similarly, the integral equation
b

f(s)=~[-—-€—(2fi—— Oga<s<bhsgnm, (5)

(coss —cos )%’
F

has the solution
b

g(r)=—f;£UMd“—], a<t<b. (6)

dt| | (cost — cosu)”
I

Example 3. Solve the integral equations

(@) f(s) = (i(?rf;“’ O<a<l; a<s<b, (7)
and ’

2
b  f(s) = %, D<a<l; a<s<bh. ®)

£

From (8.1.5) and (7), we find that £(#) = £2, which is a strictly mono-
tonic function. The solution, therefore, follows from (8.1.7):

(t)_Zsinomi ‘ uf (u) du
9t = dt | (=2’

a<t<hb. 9)

Similarly, the solution of the integral equation (8) is

b
2sinarn d uf(v) du

@) Ry a<t<bh. (10)
!

g(t) = -

The results (%) and (10) remain valid when g tends to 0 and &
tends to + 0. Hence, the solution of the integral equation

fs) = ng—(?'_)f%, 0<a<l, (an
]
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is
13

_ 2sinar d uf () du
g(f) - dtﬂ[(tz_HZ)l—a . (12)
Similarly, the solution of the integral equation
[ ear
fls) = (—tz—sz)" O<a<l, (13)
is
_ 2sinan d d uf (v) du
9() = m o di J W= (4

8.3. CAUCHY PRINCIPAL VALUE FOR INTEGRALS

The theory of Riemann integration is based on the assumption that
the range of integration is finite and that the integrand is bounded. For
the integration of an unbounded function or an infinite range of
integration, the concept of improper integrals is introduced,

Consider a function f(s), defined in the interval « £ s £ b, which is
unbounded in the neighborhood of a point ¢, a < ¢ < b, but is integrable
m each of the intervals (g, c—e&) and (c+#, #) where £ and 5 are arbitrary,
small positive numbers. Then, the limit

] ) ds - lim [ s+ jbfw as] . M

40 O oy

if it exists, is called the improper integral of the function f(s) in the
range (a, b). Here, it is implied that & and # tend to zero independently.
But it may happen that the limit (1) does not exist when ¢ and n tend to
zero independently of each other, but it exists if ¢ and # are related.
The classic example is the function f(s) = 1/(s—¢), a < ¢ < b; the limit
(1) in this case is
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c—f

ds ds b—c £

— 4t | — =log— +log-.

s—c §—c c—a #
a c+n

If £ and 5 tend to zero independently of each other, then the quantity

log(e/n) will vary arbitrarily. However, if £ and # are related, then the

above limit exists. In the special case € = #, this limit is

b
ds b—e
— = log— e
s—c c—a
a8
and is called the Cauchy principal value or Cauchy principal integral.
The same definition applies to a general function f{s). The Cauchy
principal value of a function f(s) that becomes infinite at an interior

point x = ¢ of the range of integration (a, b) is the limit

=0

lim (f+ fb) fs) ds 3

where
0 < & € min(c—a,b—¢) .

Such a limit is usually denoted as P [} f(s) ds or [*} f(s) ds. We shall
use the laiter symbol in the sequel.

A similar definition for the Cauchy principal value is given for
integrals with an infinite range of integration. For instance, the limit

j?f(s) ds = jim ff(s) ds

—
B-m -4

may not exist when 4 and B tend to infinity independently of each other,
but the limit exists when 4 = B. This limit,

A
lim j fs) ds , (4)

A-»w_A

is called the Cauchy principal value. The limits (3) and (4) are also
called singular integrals.

If a function f(s) satisfies certain regularity conditions, then the
above-mentioned singular integrals exist. One such concept of regularity
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is the Holder condition. A function f{s} is said to satisfy the Holder
condition if there exist constants & and =, 0 <o <1, such that, for
every pair of points s;, 5, lying in the range g € s € b, we have

|fls) = fGsy)| < kfs; =55/ (5)

Such a function is alse said to be Hélder continuous. The special case
o =1 is often called the Lipschitz condition.

It is not hard to prove that, if f(s) is Holder continuous, then the
singular integral

| L@ ©
exists. Indeed, the relation (6) can be split as

bf(t)—f © 4

i—s

B
d
CIET 0

The first integral has the principal value as proved by the relation (2).
In the second integral, the integrand is such that

fO—f8)
t—s

< kl|t—s[*"'.

Therefore, this integral exists as an improper integral for o < 1 and as
a Riemann integral for x = 1.
The function £, (s) defined by the singular integral (6),

£ = [ LAe—9] dt,

has the following property, which we state without proof. If f(s) is
Halder continuous with exponent a, a < 1, then £, (s} is also Holder
continuous in every closed interval (a;,b,), where a<a, £ x < b, <b.
When 7(s) is H8lder continuous with e« =1, then f,(s) is Holder con-
tinuous with exponent 8, which is an arbitrary positive number less
than unity.

The Hlder condition can be extended to functions of more than one
variuble. For example, the kernel K(s,¢) is Holder continuous with
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respect to both variables if there exist constants £ and a, 0 < <1,
such that

lK(Slo 'rl) - K(Sb tz)l < k[lsl _‘5‘21"l + |f1 - t21“] 1 (8)

where (5, ) and (s,, £,) lie within the range of definition,

The Cauchy principal value for contour integrals is also defined in a
similar fashion. A contour integral of a complex-valued function with a
pole ¢ on the contour strictly does not exist. However, it may have the
Cauchy principal value if this concept is extended for this case. For this
purpose, let L be a closed or open regular curve (i.e., it has continuous
curvature at every point) {see Figure 8.2). Enclose the point ¢ by a

Figure 8.2

small circle of radius & with center at ¢. Let L, denote the part of the
contour outside this circle. If a complex-valued function f(z) is integrable
along L., however small the positive number g, then the limit

lim | f(2)dz,

e=0

Le

if it exists, is called the Cauchy principal value and is denoted as

j () dz

or
? | f@a

We shall be interested in the contour integrals of the Cauchy type,
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fU@ic-214, ©)

in the sequel. It is known in the theory of functions of a complex variable
that, if f(z) satisfies the Hlder condition

f@)—f@) < klzi—z,]%, (10)

where z,,2, is any pair of points on L, while k and « are constants
such that 0 < « < 1, then the integral (9) exists for all points z on the
curve L, except perhaps its end points, The function £, (z) defined by
the integral (9) is also Hdlder continuous, with similar properties as
given for the case of the corresponding real functions.

The definition (10) can be extended to complex-valued functions of
more than one variable as was done for the real-valued functions above.
Incidentally, the function f(t) occurring in the integral (%) is called the
density of the Cauchy integral.

8.4, THE CAUCHY-TYPE INTEGRALS

The integral equation

70 = 5 | L ®

T—2
. L

where L is a regular curve, is called a Cauchy-type integral. We shall

first study the case when L is a closed contour. For the discussion of the

integral equation (1), we need a result from the theory of complex-

valued functions, which we state without proof.

Let g(t) be a Holder-continuous function of a point on a regular
closed contour L and let a point z tend, in an arbitrary manner, from
inside or outside the contour L, to the point ¢ on this contour; then the
integral (1) tends to the limit [3, 15]

*

f"(r)=%g(t)+ﬁjg~(—ﬂdr @
L

T—f
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or

. 1 I tg(@)
f7O=-3590+5-|— dr, (3)
L
respectively. The formulas (2) and (3) are known as Plemelj formulas.
It is interesting to compare them with the formulas (6.2.10) and (6.2.11).
Incidentally, we follow the standard convention of counterclockwise
traversal of the closed contour I. This means that the first boundary
value £ (1) relates to the value of the Cauchy integral inside the region
bounded by L, while the second boundary value £ (#) relates to the

value in the outside region.

Let
1 e
g.(t) = z‘fa‘f;‘__;d“’ @
L
_1{a@
g2(t) = mf o )
L

be two singular integrals, where ¢ and g, are Hélder-continuous
functions and L is a closed contour. Can we compound these two
integrals and obtain an iterated integral connecting the functions ¢,
and g? The answer is in the affirmative. To prove this assertion, consider
the Cauchy-type integrals

70 = 5 | L2 (®)
wilt—z
i
and
1 g.(®
fl(z)—zaj‘ Tt (M
L

Using the Plemelj formula (2) and the integrals (6) and (7), we obtain
the limiting values

RS B 1)
fro= z“‘”mjf_;d’* ®)
L
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*®

1 1 19,00
YN = S R 4
£t = gl(r)+2nfjr_tdr. ©®
L
Comparing the relations (4) and (8) on one hand and the relations

(5) and (9) on the other hand, we obtain

g =r"-3®, (10)
g:(0 =i () —49.(1) . (n
Substituting (10} in (7) vields
L (@, 1 g
fi@) = 2_11;_[ 1—2 dt_4ﬂif1:2dt' (12)
L L

The value of the first integral in equation (12) is f{z) because its density
J 7 () is the limiting value of the function f{z), which is regular inside L,
and therefore we can use the Cauchy integral formula. The second
integral is one-half of the integral in (6). Hence, f,(z) = } f(z), which
implies that

LT =110. (13)
From (10), (11}, and (13}, it follows that
g2(t) = LT (O =1L/ (H—-19(0] = 39(0) . (14)

Finally, from (4), (5), and (14), we have the required iterated integral
equation:

* *

: Jd“ jg“’ de = 390 (15)

Qe |t —t)t—1
L L
the so-called Poincaré-Bertrand transformation formula.
It is interesting to note that, in the formula (15), it is not permissible
1o change the order of integration, Indeed, if we change the order of
integration, then the left side of (15) gives

* *

1 dt,
aT:)ZJg(” “"‘J(r*n)(rl—r)' .

L L
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But
dr, B _1__ dt, dr, | 0
G—t) =) T—t| ) 1,—t n—t|
L L L

where we have used the Plemelj formula (2), which gives for the present
case

* ¥

J dr, J dr, .
= =ni.
T, —¢ T

L L

Thus, the relation (16) is equal to zero and not g (1) as in {15).

8.5. SOLUTION OF THE CAUCHY-TYPE SINGULAR
INTEGRAL EQUATION

(i) CLOSED CONTOUR. The problem is to solve the integral
equation of the second kind

*

) = - 2 [, m

t
L

where ¢ and b are given complex constants, g (1) is a Hélder-continuous
function, and L is a regular contour. A fortunate aspect of this integral
equation is that it can be solved simultaneously for the cases g4 #0,
and a =0, so that the solution of the integral equation of the first kind
follows as a limiting case.

To solve (1), we write it in the operator form

b -
Lg =ag(t)+—.J.g'—£t—)
biN 3 T—1

L

dv = f{n), 2

and define an “adjoint” operator
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M¢=a¢(x)—£—f‘[gdt. 3)
L

From (2) and (3), it follows that

MLg = al:ag(t) +—= Jf(!) :I

L

—ij 4 [ g(t,) + — F(")d’}w. 4)
i)ty —1t | 11y
L L

Using the Poincaré-Bertrand formula (8.4.15) and after a slight simplifi-
cation, equation (4) becomes

g() = a? jbz O bz) i Jf(r) ’ (5)

where it is assumed that & — #% % 0. Substituting (5) back in the integral
equation (1), it is found that the function g (¢) indeed satisfies the original
integral equation.

The solution of the Cauchy-type integral equation of the first kind,

- S0 = LE‘) , (6)

¢
L

follows by setting @ = 0 in (5):

/@,
g = b_ﬁ:"xj __r . (7
L
For b =1, equations (6) and (7) take the form
d
J 1DE_ 10, .jf(")d”‘ 6, ®)
i 1— ) ot

L L
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which displays the reciprocity of these relations.

(i) UNCLOSED CONTOURS AND THE RIEMANN-HILBERT
PROBLEM. The analysis of the case (i) is based on the application of
the Poincaré—Bertrand formula. When the contour L is not closed,
then this formula is not applicable and new methods have to be devised
to solve the integral equation (1). However, the Plemelj formulas
(8.4.2) and (8.4.3) are valid for an arc also when we define the plus and
minus directions as follows. Supplement the arc £. with another arc L'
so as to form a closed contour L+ L' Then, the interior and exterior
of this closed contour stand for the plus and minus directions. Thus,
we have

T DR W 1)
/ ("—zg(‘”zm-jr_;d‘“ ©®)
L
1 1 fo@@
f (t)——fg(!)+ﬁ"‘¥—_—!df, (10)
L

for an arc L. These formulas can also be written as

gy =r*-r7, (11)

*

ff—f‘—zdr SO0 (12)

L

1
i

Now, suppose that a function w({) is prescribed on an arc L and that
it satisfies the Holder condition on L. It is required to find a function
W(z) analytic for all points z on L such that it satisfies the boundary
(or jump) condition

W —W () =w(), teL. (13)

The formula (11) obviously helps us in evaluating such a function W(z).
The problem posed in (13) is a special case of the so-called Riemann-
Hilbert problem, which requires the determination of a function W(z)
analytic for all points z not lying on L such that, for ton L,

W —Z(OW () = w1}, (14)
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where w{t) and Z(r) are given complex-valued functions.
1t follows by substituting the formulas (11) and (12) in the integral
equation
b Ld
ag(!)=F(!)—fj@dr, (15)
i | t—t

F A

that the solution of this integral equation is reduced to solving the
Riemann-Hilbert problem

(a+B)fT () —(@=b) /(= F@). (16)

We shall content ourselves with merely writing down the solution of (1).
For details on the Riemann-Hilbert problem the reader is referred
elsewhere [3, 13, 15].

Let L be a regular unclosed curve; then the solution of the singular
integral equation (1) is

) b r—ay™
g = Eii—bzf(!) - m(r;)

] T—8\" dt ¢
XJ‘(T_—a) f(T):+m)*1-m(t—_W” (17
L

where o« and § are the beginning and end points of the contour L and
the number m is defined as

a+b

1
=— log—:.
"= Tmi b
The quantity ¢ is an arbitrary constant and is suitably chosen so that
#(#) is bounded at « or at §.

In particular, the solution of the integral equation of the first kind
{we can put A= 1 without any loss of generality),

)= I—lefg dr, (i8)

t
L

is obtained from (17} by setting a=0, b=1. Then, m=1/2 and
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[

Y Gl A ol el AN () ¢
g(’)_m‘(r—ﬂ) J(r—fx) =t ie-prE P
L

8.6. THE HILBERT KERNEL

A kernel of the form
K(s,7) = cot[(z—s)/2],

where s and ¢ are real variables, is called the Hilbert kernel and is closely
connected with the Cauchy kernel. In fact, the integral equation

§(s) = f19) = 4 [ F(s, ) {eotl(r—s)21}g (1 dt, (1)
0

where f(s) and F(s, 1) are given continuous functions of period 2,
is equivalent to the Cauchy-type integral equation

g(©) =f(C)—A_[[G(C,t)i(r—C)]g(t) dr, @

where { and T are complex variables and the contour L is the circum-
ference of the unit disk with center at the pointz =0.

Let ¢ and t denote the points of the boundary L corresponding to
the arguments s and ¢, respectively:

L=6", 1=¢6",
so that
dr et dt i t—s i
-c_—ﬁ = !e“—e“ = I:E COI(T) -+ '2‘:| dar . 3
Therefore,
t— 2d d d
2 —{ ={r

and equation (1) takes the form (2).
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The Hilbert kernel (1) is also related to the Poisson kernel in the
integral representation formula for a harmonic function U(r, 5):

v 1 ©-p . .
(rs) = 1472~ 2rcos(t—s) u@dt, )
u

inside the disk » < 1. The function (1) = U(l, ?) is the prescribed value
of the harmonic function on the circumference L of the disk. Set

z = re", T=2¢

in the relation (5) and get

Ur,s) = R{ j ()‘izf} ©)

T—Z T
L

Now, let ¥{r,s) be the function that is harmonic conjugate to U(r, s):

U(r,s) + iV(rs) = —j Pty %)

T—z T

such that ¥(r, 5) vanishes at the center of the disk:
Vir,s)1,-0=0. (8)

Then, the function ¥(r,s) is uniquely defined.

When r— 1, so that z tends to a point { of the circumference L from
within the disk, we can apply the Plemelj formula (8.4.2) to the analytic
function (7). Therefore from (7), (8.4.2), and (4), we obtain

rid

v{s) = —%{J‘ ult) cot( )dt (9)

o

where ¢{s) = V(1, 5) is the limiting value of th harmonic function on L.
The formula (9) thus connects the limiting values of the conjugate
harmonic functions U(r,s) and ¥(r,s) on the circumference.

We shall need the iterated formula formed by compounding the
integrals with the Hilbert kernel:
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P

1 [ §—1
g1(5) =2—“. g(t)cot(T) dt, (10
]
and
17 -
9,(5) = o gl(r)cot(fz—t) dt . an
(13

If U(r,5), U (r,5), and U,(r,s) are the functions that are harmonic
inside the disk » < 1, and whose values on the circumference r =1 are
equal respectively to g(s), g,(s), and g,(s), then from (9) it follows
that U, {r,s) is a harmonic function conjugate to U(r,s) and U,(r,s)
is conjugate to U/, (r,s). The Cauchy-Riemann equations then yield
the relations

U o, ou U,
FIF P o o5’

or
Uyr,s) = -U(r,5)+ C, C = const. (12)

But the constant € can be determined from the condition (8):
27 2
C= U9 =0 = (2 [ U0 d = (1120 [ g(ydr,  (13)
D 0

where we have used the mean-value property of the harmonic function.
Thereby, (12) becomes

n
U,(r,8) = — U(r,s) + (1/2m) j g de. (14)
1]

Now, put r =1 in the above equation, use the relations U(1,5) = g(s)
and U,(l,s)=g,(s), and get
2n

92 = —g(&) + (120) { g (O it . (15)

From {10}, (11), and (15), we finally obtain the required iterated integral
equation:
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2m 2

(ﬁ)’;jm(o_;) jgmmt( )

ix

1
= —g(s) + 2—ﬂfg(t) dt , (16)

0

which is called the Hilbert formula.

8.7. SOLUTION OF THE HILBERT-TYPE SINGULAR
INTEGRAL EQUATION

We can solve the integral equation of the second kind

ag (s} = f(s) ——Ig(t)cot( )dt (1)
0

where @ and & are complex constants, in the same manner as we solved
the corresponding Cauchy-type integral equation {8.5.1). As in Section
8.5, we define the operators L and M as

457

Lg = ag(s) + %{ j g{f)cot ("TS) dt )

Q

Mo = ap(s) — — j () cot(-;—) dr . (3)

Then,

Fid

b r—
MLg = a|:ag (s} + % J. g0 cot( 2 ) d{| (equation continued)

Q
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Fid

b f—s
—ZTJ‘COT(—Z‘—) dt
[}

Pty

X [ag(t) + %Ig(a}cot( )da] = F(s), G

1]
where

F(s) = Mf = af(s) — %J‘ flH)eo ( 25) dt .
1]
Using the Hilbert formula (8.6.16) and simplifying, we obtain the relation
o :
(@+69g(s) - (B*/2m) [ g0 dt = F(s) . )
Q
The integral equation (5) has the simple degenerate kernel K(s,£) =1,

and can be readily solved by the method of Chapter 2. The result is

2r

a b :
90 = 0~ g | FOcor( )
0
n

bz
+m.[f(t)dh 6)
4]

provided a2 +5b% #£0.

For the particular case ¢ =0, the formula (6) is not applicable.
Therefore, the solution of the Hilbert-type integral equation of the
first kind

29

fs) = I g(t)cot( )dr g
0

cannot be deduced from that of the second kind. But the integral equation
(7) can be solved by other methods. For instance, the method of
Section 8.1 is applicable here. Indeed, let us consider equation (7) with
the constant b incorporated in g(f):
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S5y = —I g(t)cot( )dt (8)
In this equation, change s to ¢ and ¢ to ¢, multiply both sides of the

resulting equation by
1
2— cot( ) dt

integrate from 0 to 2z, and use the Hilbert formula (8.6.16). There
results the equation

2
9(s) =~ (1/2m) [ gy dr = F(s), ©)
1

where
F(s) = ——ff(t)cot( )d: (10)

The integral equation (9) also has the simple kernel K{s,¢)=1 and
therefore can be solved by the method of Chapter 2 if we set

2
(1/2m) I g(s)ds =¢.
0

Then, equation (9) becomes

g($) ~ ¢ = F(s), (1)
which, when integrated with respect to s from 0 to 2n, gives

2
fF(s) ds=0. (12)
0

From the relation (10), it follows that equation (12) holds for ail values
of the function f{s). Therefore, the constant ¢ is an arbitrary constant
and the solution of the integral equation (8) is

g(s) = ——Jf(t)cot( > )dt+c (13)
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Finally, when we substitute (13) in (8), we find that the function g(s)
given by the relation (13) satisfies the original integral equation if, and
only if,

2
jf(s)ds =0. (14)

Hence, the condition (14) is necessary and sufficient for the Hilbert-type
singular integral equation of the first kind to have a solution.

The second method is to use the resulis of Section 8.6, where we
have connected the Hilbert kernel with the Cauchy kernel. For this
purpose, we write g{e") =g(1), etc., and assume that g(¢) and f{¢)
are periodic functions with period 2=, Further, we replace f(¢) by f(t)/i.
Then, the formulas (8.5.8) with the help of the transformation (8.6.3)
yield the reciprocal relations

—J‘ {t)cot( )dt«l——J. g(8) dt = f(s) (15)

and
—J.f(r)cot( )dt+—J.f(r)dt —g(s). {16)

With the help of this pair of equations, the solution of the integral
equation (8} can be easily deduced.

It follows from the pair (15)-(16) that, for periodic functions f(#)
and g(n), if the condition [ f(¢) dt=0 is satisfied, then we also
have ﬁ," g(t) dt =0. We shall have more to say about the integral
relations (15) and (16) in the next chapter.

8.8. EXAMPLES

Exampile 1. Prove that the integral equation
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Ww—u

s o 120w —0)
F(v) = wa(w) dw (1)
1]

has the solution

1/ w \2 4 1—o\*% g r—w)
“’f(“’>=—?(m) J(—) == O
Q

The integral equation (1) arises in the discussion of various problems
of mathematical physics. The solution follows by comparing (1) with
(8.5.18) and (2) with (8.5.19), and by settinga =0, §=1.

Example 2. Solve the integral equation

t—3

© ‘ l *3W
Zl(a,, cosns + b, sinns) = 2_1'5_[ g{fHcot (T) dr . (3)
Q

Observe that the function f{s) = 2% (g, cosns+ b, sin ns) is a periodic
function with period 2n. Moreover, the condition [3*f(H)dt=0 is
satisfied. Therefore, from the reciprocal pair (8.7.15) and (8.7.16), it
follows that

2

1< {5
- i t{ — ]d
g(s) o’ [Z(ancosm-i-b,,smm)]co( 3 ) t
0

Z (a,sinns — b, cosns) , 4

r=1

H

where we have left the actual integration as an exercise for the reader.

EXERCISES

Solve the following integral equations.

&5

1. a+bs+ cs? +ds? =j

1

g(0) dt

— l<s<?2,
{(cos t — coss)"
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where a, b, c,d are real constants.

gi{t) dt

2 atbstestrdd — j—IPE
(coss — cos )%

l<s< 2.

5
13

1 dt
3. 2= j(sgz(_);z)‘/a , 2 <5< 4.
2
4
o dt
4., st = J.W(I‘i(_)sz).ﬁ , 2<s<4.

5

| g@)dr
5 as+bs _I(s—t)%'

0

6. Substitute the solution (8.5.5) in (8.5.1) and verify that this solution
satisfies the given integral equation.

7. Prove that the solution of the integral equation (8.7.5) is (8.7.6).
8. Find the solution of the integral equation

X

-
g(s) = (sins) — 1 g(#)cot Nar.
27 2
4]
9, Solve the integral equation

S_lsrzg(r)dr {—fl{S), 0<s<bh,

J F-)%E T fl®), b<s<ow,

where b is a constant.

10. Prove that the solution of the integral equation

&
—2x—2n

A2 _ 2 tg(ndr, 0 <1,
T® (s Y~ g() < a
0

S} =

is v
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t

Iu2¢+2q+ 1 (tz_uZ)—af(u) du .

o

;" g
T(l—a)dr

gy =

11. Prove that the solution of the integral equation

fls) =

252 o
I*(oc)J‘(tz—sz)"‘_‘ 1_2“_2"”9(:) dr, O<ax<l,

is
o
r2a+ n—1 d

_m EIJ‘ u—2q+l(u2_r2)—af(u) du .

gl =

12. Solve the integral equation

ng(x)dx | A®, Os<s<a,
17— s?)% —f3(5), a<s<w.

£



INTEGRAL TRANSFORM CHAPTER 9
METHODS

8.1, INTRODUCTION

The integral transform methods are of great value in the treatment of
integral equations, especially the singular integral equations. Suppose
that a relationship of the form

96) = [ D0 K(x, g () dedx M

is known to be valid and that this double integral can be evaluated as an
iterated integral. This means that the solution of the integral equation of
the first kind,

£ = [ Ksngwr, @
is

§6) = [TGnfwdr. 3)

Conversely, the relation (2) can be considered as the solution of the
integral equation (3). Tt is conventional to refer to one of these functions
as the transform of the second and to the second as an inverse transform
of the first.

194

-
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The most celebrated example of the double integral (1) is the Fourier
integral

e M gD dtdx @

g8

g9) = (/2m |

which results in the reciprocal relations

£y = emy% [e™gydr )
and -
()= @m™% [efy dr. ©

The function f(s) is known as the Fourier transform T[g] of g(f) and
g(s) as the inverse transform T~ Y[f] of f(5), and vice versa. The
function f(s) exists if g(¢) is absolutely integrable, and it is square-
integrable if g(z) is square-integrable, as can be readily verified using
Bessel’s inequality. In the sequel, we shall assume that the functions
involved in the integral equations as well as their transforms satisfy the
appropriate regularity conditions, so that the required operations are
valid.

As a second example, consider the double integral

g(s) = (2{n) I J.(sin sxsinxf) g(e) dedx . (N
g o
This leads to the sine transform and its inverse,
() = @ny% [ Ginst) g (o) dt ®)
and ’
g(s) = Qimy* [ Gsinsnf (o) dt , )
1]
respectively.

For ease of notation, we shall also call the transform of / as F and
that of g as @, etc., for all the transforms. It will be clear in the context
as to what transforms we are implying.
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9.2. FOURIER TRANSFORM

The Fourier transform T[f],
TLf1= Fis) = Q0% | fye ™ dr ©)
is a linear transformation:

T[af+bg] = 2m)~* I [af()+bg (D] e~ dt

-

= a(2n) "% Jf(t)e_‘“ di + b(2m)™% _[g(r)e"‘*‘ dt

bl + 1}

=dT[f]+bT[g]. (2)

As such, we can use many properties of the linear operators. Further-
more, in Chapter 7 (sce Exercise 11), we found that under Fourier
transformation a square-integrable function preserves its norm. Hence,
for such a function, we have

ITCAN = 1FF =171 3

Let us note some of the important properties of the Fourier transforms.
They can be found in every standard book on the subject (see, for
example, [17]) and, in fact, can be proved very easily by the mere use
of the definitions above. These properties are:

) TL—a] = e *T[/], 4
where « is a constant,

) TLfa)] = (la) TLAD 5o s - (5)

(i)  TLAO1=sTLW] . (6)

where the prime denotes differentiation with respect to the argument.
Similarly,

TLAH0] = G TLAO] 7
where by /*(#) we mean the kth derivative of /.
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av) If

h() = [ £ dx,

then
Th@] = Vi TLf@)] .

197

()

©)

From (6) and (9), we see that the differentiation has the effect of multi-
plying the transform by is, whereas integration has the effect of dividing

the transform by is.

(v} The convolution integral
) = @7% [fu-0g()dx = Q07% [ g(t—xf(x) dx

gives

Thn]l = T(1T[g],
or
H(s) = F(5)G(s) .

9.3. LAPLACE TRANSFORM

The Laplace transform L[ /] of a function f(s) is defined as

LUf1 = F(p) = [fie ™ ds.

The inverse L™[F] is

y+iw

L7'[F} = fi9) = (1)2m) | F(pye™dp.

y—=Jdon
This transformation is also linear because
Llaf+bg] = aL[f] + bL{g],

for two constants « and b.

(10

(11

(12)

(1

2)
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The following are some of the basic propertics of the Laplace
transform:

)  Fp—a) = LLe*S5)], 3
(i)  LLfas)] = (U} LLA5)pms pya » )
(iia)  LLS'1 = pLLA]-SO), &)

LU =P LU 1P 0 - P00 - e = SN0,

(6)

(©  dF(p)ldp = —L[0)], &)

where f* means kth derivative with respect to the argument,

(iv) ¥

h(s) = [ fix) dx, ®
then
Llh] = H(p) = (/P LLS]. 9
(v) For the convolution integral
b = [fge—ndx = [gfc—Ddx,  (0)
0 o
we have
LiAl = LLf1LL9], (1)
or
H(p) = F(p)G(p), (12)

which is the same as (9.2.12).

9.4. APPLICATIONS TO VOLTERRA INTEGRAL EQUATIONS
WITH CONVOLUTION-TYPE KERNELS

The basic information given here about the Fourier and Laplace
transforms is sufficient to demonstrate their application to the solution
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of integral equations. We shall apply only the Laplace transform in this
section, although the Fourier transform can also be applied just as
effectively. Let us first consider the Volterra-type integral equation of
the first kind,

J© = [ks—ng@ar )

where k(s—) depends only on the difference (s—1t). Applying the
Laplace transform to both sides of this equation, we obtain

F(p) = K(p)G(p)
or

G(p) = F(PYK(D) . (2)

The solution follows by inversion.
The present method is also applicable to the Volterra integral equation
of the second kind with a convolution-type kernel

g(s) = f6) + [k(s—Dg( at . @

On applying Laplace transformation to both sides and using the
convolution formula, we have

G(p) = F(p) + K(p)G(p)
or )

G(p) = F(p)/[1-K(p], (4

and inversion yields the solution.

We can also find the resolvent kernel of the integral equation (3) by
integral transform methods. For this purpose, we first show that, if the
original kernel k(s,#) is a difference kernel, then so is the resolvent
kernel. Since the resolvent kernel I"(s, £) is a sum of the iterated kernels,
all that we have to prove is that they all depend on the difference (s—1).
Indeed,

ko(s, ) = J.k(s—x)k(x—r) dx = f kis—t—a)Yk(a) do , (5
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where we have set o = x—¢. This process can obviously be continued
and our assertion is proved. Hence, the solution of the integral equation

(3)is

9 = /) + [ De—nf@) dr. ©
Q
Application of the Laplace transform to both sides of (6) gives
G(p) = F(p) + Q(p)F(p), M
where

Q(p) = L[I(s—0] . 8

From (4) and (7), we have
F(p)[1-K(p)] = F(py[1+Q(P)], )]
Q(p) = K(p/[1-K(p)] . (10)

By inversion, we recover T'(s—17).

We illustrate the above ideas with numerous examples. Throughout
these examples, we have left the evaluation of the Laplace transform
and its inverse to the reader. There are numerous monographs that
contain the required formulas {3, 12, 17].

9.5. EXAMPLES

Exampie 1. S8olve the Abel integral equation
£& = [lg0s—071dt, O<a<l. (m
0

This is a convolution integral and therefore

F(p) = K(pG(p), 2

X

where K{p) is the Laplace transform of k(s) =s7%;
K(p)=p"'T(1-0) . 3
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From (2) and (3), it follows that

p'T*F(p) p

60 = Fiow = T =g L@rFO)
__ -
= L L@ FO) @

where we have used the relation T'(e}I'(1 —u«) = nescne. Now if we
use the relation (9.3.12), (4) becomes

G(p) = = pL[ f O 0 dr] . )
o]
By virtue of the property (9.3.5), we finally have
sinar d | a1t
g(s) = - (s—0* "f(ydt, (6)
k) 5

5

which agrees with the relation (8.1.4) obtained in the previous chapter
by a different method.

Example 2. Solve the integral equation
5= Je‘"‘g(t) dr . (N
4]

Taking the Laplace transform of both sides, we obtain
1/p®> = K(p)G(p) , ()

where K(p) is the Laplace transform of k(s) = ¢°;
K(p) = je’e'” ds = lj(p—-1). )]
0

'The result of combining (7), (8), and (9) is
G(p) = (p=1)p* = (1/p) - (1/pY),
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whose inverse s
gis)=1-vs. (10

Example 3. Solve the integral equation
sins = JJo(s—t)g(t) dr . (11
4]

Here, the function k(s) = J,(s), whose Laplace transform is known
to be 1/(1+p?)*%. Also, the Laplace transform of sins is 1/(1+p?).
Therefore, when we take the Laplace transform of equation (11), there
results the relation

G(p) = 1/(1+pH%,
which by inversion vields the solution
g(s) = Jo(s) . (12)

Incidently, by substituting (12) back in (11), we get the interesting
result

f.}'o(s—t).!(,(t) dt = sins . (13)
[H]
Example 4. Recall that we solved integral equations of the type
f(s) = fk(sz—f)g(:)d:, s> 0, (14)
V]

in the previous chapter for some special cases of the kernel k(s —¢7).
With the help of the Laplace transform, we can solve equation (14) for
a general convolution kernel. For this purpose, the first step is to set

s=wh,  t=d%,  g(o) =y BaE®),  filw) = Sk

(15)

Then, the integral equation (14) takes the form

£ = [ ku=o)go)ds,  u>0. (16)
¢
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Taking the Laplace transform of both sides of (16), we get

G (p) = Fi(p)/K(p) = pFi(p)ipK(p) . (17)
By defining
1/pK(p) = H(p), (18)
the relation (17) becomes
G(p) = pH(p) Fy(p)} . (19

Using the relations (9.3.5) and (9.3.12), we have

G, (p) = L[ﬁf; f hu—0)fi(6) do} 20)

or

0.6 = 4 [He-or@ ar, @

0

where A(s) stands for the inverse of the function H(p). Finally, from
(15) and (21), we have the required solution

&

g(s) = 2% f:f(:)h(sﬁ—ﬁ) dt . (22)

o

Let us solve (14) for some special cases:

{a) k()=1"% O0<wu<1. This means that we have to solve the
integral equation

£ = [ (g™ -2y (23)
0

The solution follows from (22) if we can evaluate the function »{s) from
the relation

H(p) = 1/pK(p) . (24)
But
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K(p) = jr“e—f" dt = T(1—a)p* .
1]

Therefore,

T

h(s) =L"‘l:

1 B sinfxnsﬂ_l
Il —ao)

and

k3

_ 2sinan ﬁ () dt
- ds, (32_12)1—1. !

5

g(s) (25)

which agrees with the relation (8.2.9).

(b) k()=1t"% cos(fr”), where B is a constant. In this case,
K(p)=n*p~"“%exp(—fB%/4p). Therefore,

h(s) = L™ [n~%p~%exp(p?/4p)] = n~'s™ ¥ cosh(Br*) . (26)

This means that the solution of the integral equation

. 2 2
0= [CEEDDswa, 520, @
0

is
2 d (cosh[B( - %)

n ds ($2—H%
o

g@) = H(n) dt . (28)

Note that the relations (27) and (28) remain valid for 0 < s < oo,

Examplie 5. Solve the inhomogeneous integral equation

9 =1-[—ne®ar. (29)
Since
k() =5, K@y=1p*, (30)
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the application of the Laplace transform gives
G(p) = (1fp) — [G(p)p’]

or
G(p) = pl(1+p”) = L[coss] .
Hence, the solution is
g(s) = coss. (31)

Example 6. Find the resolvent of the integral equation
96) = /& + [ s-ng® ar. (32)
1]

Here again k(s) = 5, and we have K(p) = 1/p®. The formula (9.4.10)
gives Q(p) = 1/(p?— 1), whose inverse is I'(s) = 1(¢* — e~ *). Therefore,
the value of the resolvent kernel is

L(s—8) =} —e™),

and the solution of the integral equation (32) is

& &

9() = f@ + 3¢ [ e fyd — e [ éfinyar . (33)

o 4]

Example 7. Find the resolvent of the integral equation
g{s) = f(s) + I g de . (34)
Q

Here, &£(s) = ¢, which gives K(p) = 1{(p—1), and from the formula
(5.4.10), we have Q(p)=1/{p—2), I'(s) = ¢**. Hence, the resolvent
kernel is T(s— ) = e*~ %, and the solution of the integral equation (34) is

g6s) = &) + [ e* ¥ fley e . (35)

Example 8. Solve the integral equation

9(5) = ) + 4 [ S (s—0g @ dr (36)
o
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The kernel k(s} = AJ;(s), and therefore

A

Q(p) =015’

e

L) = ,12)%_[ [sin (1 - 4%)*] (s — o) —— (a)

2

A ,
m sinf(1 —A%)%s] . (37)

The value of the resolvent kernel follows by setting (s—¢) for s and the
solution of the integral equation (35) is then readily obtained from the
formula {9.4.6).

+ A{cos[(1 —A%% 5]} +

Example 9. As a final example, solve the inhomogeneous Abel
integral equation:

g(s) =f(S)+f1f[9(f)!(S—t)“] d, 0O0<a<l. (38)

The kernel k(s) = As™® yields
K(p) = iC(1—o)p*" !,
Qp) = Al'(1-a)p* Y1 -Ar (1 —a)p*~ '] .

The inverse of (39) is

(3%

2 (AL (1—a)s' "
PO = 2 St —a

(40)
Hence, the solution of the integral equation (38) is

f o [AT(1—® (s—H ]
g(s) = f(&) + f > S . (41
J =1 —DT (-]
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9.6. HILBERT TRANSFORM

The finite Hilbert transform of a function g{yp) is usually defined as

1 sin 0
Hh=-| ——— do , 1
76) Jcose_mwg(w 0 M
¢
with the inverse
1 sin @ 1
- - do . 2
g(6 njcosw_cosef(w)d¢+ﬂj9(¢) ® @
0 0

Various other forms of the Hilbert transform pair can be deduced
from equations {1) and (2). In this connection, we need the relation
[ cosng di sinne
COS¢p — COS ot sine

which can be proved by induction since the cases n=0 and n=1,
are elementary relations.

From (1) and (2), it is apparent that f{—8) = —f(®), g(—0) =g(D.
Now, set

£i0) = —f(0), sothat f,(=6) = —£,(), )

. (/m [g@dp = C, €= const, ©)
4]

g, =g® —C, sothat g, (—-H=g@-C. (6

From the above relations, it follows that

Wm [g.0)d0 = (m) [g@ do—(my [Cdo =0, (@)
o ¢ Q

and

- n
"

I sin 0 ([ sin0
- - A = — P _ d
njcoscp—cosﬁgl(qo)d(a njcosw—cosﬂ[g(qp) Clde
0 0
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. C sin .
= —f(o)—;f*—md¢ =f10).

cos (@ —
®)
Writing 8 = 1(8—¢) + 5(8+¢) in equation (8), we get
£ = 0/27) [ [eot3(0+¢)1 g, (@) do
0
+(1/2) [ [eot 46 —) g1 (¢) dp - ©)
0

In the first integral, replace ¢ by —¢ and use the relation (6). Combine
the resulting integral with the second integral in (9). The result is

£0) = (1/20) [ [eot1(0— @)1, (e) do . (10)

Similarly, by starting with equation (2) and going through the sam
steps as above, we get the relation :

g:(0) = (1/21) [ [eot3(0—O)1£,() dp

+(1720) [ [cot 1o +0)11, () dop an
0

After replacing ¢ by — ¢ in the second integral and using the relation (4),
we obtain from (11}

9:(® = (1/2m) _f[cot%(fp—ﬂ)]fl(fp) de . (12}

The relations (10) and (12} constitute a second form of the finite
Hilbert transform pair.

The third form of the Hilbert transform pair can be deduced from (9)
and (11). In fact, the relation (9) can be written as

£16) = (1/2m) [ [1 + cot 40 +9)1 g1 (0) dp
1]
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+(1/2m) [ 1 + cot 1(0—) g1 (0} dp — (1) [ g1 (9} o .
Q ¢ (13)

The last integral vanishes because of (7), while the first integral can be
combined with the second by replacing ¢ by —¢ and using (6). The
result is

S1(®) = (1/2n) J. [1+cot3(0—-@)]g. () dp . (14)

Similarly, the relation (11) takes the form

61(0) = (1/27) [ [1 + cot (@ —0)11, (9} dip . (15)

The transform pair (14)-(15) is precisely the reciprocal pair of Hilbert-
type singular integral equations encountered in Section 8.7 of the
previous chapter except for a trivial adjustment of the symbols and the
range of integration.

A fourth form of the finite Hilbert transform pair, which is nonangular,
is obtained from the pair (1)-(2) by setting

f(6)  fleos™' x)

sinf (1-x)% "’

_g(®  glcos'x) (16)
sinf (1—x¥% ~

x =cosl, y=Ccose, p(x) =

Then, equation (1) becomes

w

@_lf L g

sin@ =« cosO—cosrpEn_q-osm(pd(P
0
or
xl
1 d
p(x)=—jw, “l<x<l, (17)
|l x—y

-1

the so-called airfoil equation. Similarly, (2) takes the form
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‘1

L[ 1=yVE () C
Q(x)—E‘[(l—xz) y—xdy+(1—x2)1’5’ —l<x<l1, (18)

where
1
C = (/m | q0)dy
21

has the character of an arbitrary constant.

The pair of equations (17)-(18) is a special case of the pair of integral
equations (8.5.18)-(8.5.19).

The infinite Hilbert transform is defined as

f(s) = (1fn) _f [g(@®i¢—9]dt. (19)
Its inverse is
g(s) = = (=) J. LABD(t—s)] 4t . (20)

9.7. EXAMPLES

Example 1. Solve the homogeneous integral equation

[ g)e—y1ay = 0. )
=1 -

The solution follows from (9.6.18):
g(x) = Ci(1—x*%. 2

Example 2. Solve the integral equation
sins = (Um) [ Lo (Ofie—s)] dt. 3)

To solve this equation, let us consider the integral
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a0
"

|' [e*/(s—0] dt = =i} (residues of the poles on the ¢ axis)

w

-

== wi(Co8s + isins).

Separating the real and imaginary parts, we obtain

(1{m) j‘. [(cos H/(s—£H] df = —sins,

(l/x) ] [{sin 0){(s — )] df = coss .

Comparing (3} and (5), we have the solution

gy = cost.

EXERCISES

1. Show that the solution of the integral equation

I tg(t) dt
(2 —s%"

5

flsy =2

1

1 dJ‘ (D dt

9(3‘)=—~— sy

5

Find the solution for the following two special cases:

2521 —s2%; (i) £(5) = 5%
2. Solve the integral equation

ol

fs) = sjaf%adt.

E

3. Solve the Abel integral equation of the second kind

4

(5

(6)

™

@) f()=
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5

g(s) = s“ée'"f“wﬁj%m

o

This integral equation arises in the theory of wave propagation over a
flat surface.

4. 1f it is required that in the Hilbert transform pair (9.6.17)-(9.6.18)
the function g(— 1) be finite, show that there must follow

1

1
— — A ——
jq(r)dt—J PP
-1 21

and verify that in this case the solution g{s) becomes

l

L1+ 1—1¢ p(t)
"(*‘"E(T?s) J(l%—t Pt
Y

5. With the help of finite Hilbert transform, solve the equation

£

I i _(2 assuming that gty=—g(—1.

-

6. With the help of finite Hilbert transform, solve the equation
4

as + b + a,{log|f —s|) — aglogls| = _[ Lg’ (Of(r—s)] dt
[H]

subject to the conditions

g0 =0y, g =0,, g®) =gy, gii=3g,.

7. Use the formula
J.t’_‘cosst dt =T(@|s] cos(3am), O<a<l,

and show that the integral equation
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1
£ = [ g@ls—1 dt

has no more than one solution.

8. Solve the integral equation

where a, are given constants.
Hint: Make the substitutions

5= (£ (1 —cosB), t = (1— cosg).

213

9, Use the method of Section 9.4 and find the resolvent for the integral

equation
g(s) = fis) + [ P~ g(t) .
1]
10. Solve the integral equation

9@)=ﬂﬂ+zjhﬁ—ﬂﬂﬂ&-

11. Find the resolvent of the integral equation

j_m—l
Mﬂ=ﬂﬂ+f%ﬁ%igmﬂ,
[

and complete the solution of the Example 3 in Section 5.3.

12. Use the infinite Hilbert transform pair and solve the integral

equation

1(1+57) = [ Lgs—o] dr.



APPLICATIONS TO MIXED CHAPTER 10
BOUNDARY VALUE PROBLEMS

Mixed boundary value problems occur in physical sciences rather
frequently and various mathematical techniques have been used to solve
them. In this chapter, we present an integral-equation method applicable
to most of these problems.

10.1. TWO-PART BOUNDARY VALUE PROBLEMS

An integral equation of the form

[ Kee.pgar =1, 0<p<a, m

where the function f(p) and the kernel K,(#, p) are known and g(f)
is to be evaluated, embodies the solution of various mixed boundary
value problems in potential theory, elastostatics, steady heat conduction,
the flow of perfect fluids, and various other problems of equilibrium
states. The boundaries involved are those of solids such as circular disks,
elliptic disks, spherical caps, and spheroidal caps.

The integral equation (1) is a Fredholm integral equation of the first

214
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kind and is therefore, in general, difficult to solve. However, it is possible
to reduce the solution of (1) to that of a pair of Volterra integral equations
of the first kind with rather simple kernels. This reduction is achieved
for every kernel K, (¢, p) that for all g(#) satisfies the relation

| Koltepdg (1) dt = hy (o) [ Ko, 0) [y ()]
Q 0

x IKz(w,t)g(t)hg(t)dtdw, 0<p<a, (2)

where ki, A,, #4, and K, are known functions. It is further assumed that
the kernel X, is such that the Volterra integral equations

[ Km0 dt =fp), 0<p<a, 3)
)]
and

[K:pgdt = flp), 0<p=<a @

possess explicit unique solutions for g in terms of f, for all arbitrary
differentiable functions f.

The task of solving (1) is now readily accomplished if we define two
functions S(p) and C{p) such that

S(p) = ha(p) [ Kalp, g s (e, O <p<a, (5
I

and
Jp) = hl(p)sz(w,p) CwWhy(wdw, O<p<a. (©)
Q

With the help of relations (2), (5), and (6), equation (1) takes the form

F F
i (p) [ Ka(w, Y (W) S8 dw =y (o) [ Ky, p) Clwhy(w) d,  (T)
1] ]
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D<px<a,
or
S(@=Cp), O<p<a. 8

In view of the assumptions already made about the solutions of the
Yolterra integral equations (3} and (4), we can solve equation (6) for the
function C(p) and hence, from (8), S(p) is known, We can then invert
the integral equation (5) and obtain the required function g{z). We
illustrate the above analysis with the following example.

Example. Solve the integral equation

[0 [hepd e dpdt=Qp, O<p<a, O
o] ¢

where ¢ (#) is the unknown function. This equation solves the problem of
the torsion of an isotropic and homogeneous elastic half-space due to
a uniformly rotating, rigid circular disk which is attached to its free face
(see Section 6.6, Example 2). The function J, (x) is the Bessel function.
Comparing (1) and (%), we have

g(t) =19, flp)=8Qp, Ko(t,p)=fJ1(pp)Jl(pt) dp. (10)
]

The kernel K, satisfies the relation (2) because, for all g (¢), we can write

i 2

IKo(t,p)g(t) dt = fg(t)le(pﬂ)Jn(pt) dp dt
1] 1]

w0

o Jlé(pw)J%(pv) (wo)® dvdwdp dt
I npr WA (=)

Q

i - () 5(w v)(wo) dvdwdt
np — WA ()%

1
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miti(g,)

_2 at_l ) w? dw dt
BEZ) A (P WA (P — W)
L1} 0

a

2wt [rilgmdidw 0o
= - 1 L f a,
np ) (PP —whi ] (P —wh® d
{

W

where we have used the first Sonine integral:

g

2N 1 [T, (pw) w00
J,.(pp)=(—£) —J )P dw |

o (p* —w?y%
4]

and the relation

w0

prﬂ(pw)Ju(pv) dp = d(w—v)/(wn)*,

o

217

(11)

(12)

(13)

with & the Dirac delta function. We have further used the sifting property
of this function and changed the order of integration as explained in

Figure 10.1.

—+

dw /
C (0,0} — B -

= {a,a} f=a
dt} S ]
1

e

=

w=

Figure 10.1
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Comparing (2) and (11), we obtain the values of the functions k,, &;,
hy, and K, as

hipy=2/np, hipy=p, h(p)=1/p,
Ky(t,p) = (p*-)"%, (14

Furthermore, the kernel X, is simple enough to ensure the inversion of
the integral equations (3) and (4) (see Example 3 of Section 8.2). The
present method is therefore applicable. [ndeed, we set

C () dt
e “”

I

S(p) =

2}0-[ wS(w) dw 16)

QP = ';r" (pz__wz):é .

and the integral equation (9) is identically satisfied.

Finally, we invert (16) and obtain

2 dt

p@jm % =, {an

S(p) =

and then (15) vields the value of the function ¢{p} as

(o) = _ﬁlij‘ u du 40p (13)

@)%~ m@—pH%’
10.2. THREE-PART BOUNDARY VALUE PROBLEMS

A three-part boundary value problem has an integral representation
formula of the form
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[ Kotbpgdi=fp),  b<p<a, ()
&

where b and a are two given numbers such as the inner and outer radii of
an annular disk or the bounding angles of an annular spherical cap.
The function fand the kernel K, are known, while g is to be determined.
Let us set

x

S0y = 3 ad =L +50), @
where T
S0 =T ar. O<p<a, ®
and i
S2(p) = r=ijma,p’, b<p< w. (@)

In addition, we define two functions g, (p) and g,{p)} such that

0, 0O<g<p<b,
g1p)+g:(p)=<9(p), b<psa, (5)
0, a<p<w,

From the relations (2)-(5), it follows that the integral equation (1)
splits into two integral equations:

[Kotbpadt=fie), O<p<a, (6)
0
and

[Rtpayar=f), b<p<o. )

Proceeding as in Section 2, we assume that the kernel K, (4, g is
such that for all g(1) it satisfies the relation
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r

»
i1 0) [ Ky, 9) D2 (9]
0

x fxg(w,;)g(;)kw(r)d:dw, 0<p< o,
[ Kot pygyar=1 "~ ®
0 w0

a1 (9) [ Koo, w) Dhaa ()]

x [ Ky (e WgOha® dtdw, 0<p< o,
L3

L

where h;; (i=1,2; j=1,2,3), and the kernel X; are known functions.
Moreover, the kernel K, is such that the Volterra integral equations

p
[K@og@d=fp), 0<p< o, ©)
Q

and

[Katpng@dt =1l),  0<p< o, (10)

possess unique solutions for g in terms of all arbitrary differentiable
functions f.
From relation (6) and the first part of relation (8), we have

p "
hia () [ Kawo p) i 0) [ KaOw g (D sy dedw = £i(p), (1)
1] w

O<p<a.

Similarly, relation (7) and the second part of (8) give

ha1 () _I. K(p,w) [hzz(w)]z _[ Ky(t, wyga(8) has () didw = fr(p), (12)
¥l {

b<p<w.
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The next step is to define unknown functions 8, $;, 7\, 75, C,,and C,
such that

Si(p, 0O0<p<a,

h K (p, h dt = 13
lz(p)pf 20,0081 ) (1) di {-mp), i<p<o B

—Tip), O0<p<b,

.
; Kot P dr = 14
22(P)6f 2(t,P) g2 () hip3(2) dt { S,(p), b<p<oo, (9

£
B (o) [ KaOn ) Cenha 0 dw = fi(p), O<p<a, (15
¢

ha(0) | Ky(p,w) CoMhys (W dw = f3(p),  b<p<oo.  (I6)
]

These Volterra-type integral equations are similar to equations (9) and
(10), whose solutions are assumed to be known. From (11), (13), and (15),
we derive the equation

Bis(p) [ Ka(w, 0112 (9) S, (w) v
o

= hll(P)J?Kz(w,p) Ciwh,(wydw, O<p<a, an
or ' .
Si(py=Ci(p), O<p<a. (18)
Similarly, the result of combining (12), (14), and (16) is
$ip) = Co(p), b<p< . (19)

The functions C, and €, can be evaluated in terms of the known functions
Jy and f; from equations (15) and (16). Hence, 8, and S, are known.
That leaves two unknown functions T, and T, still to be evaluated.
For this purpose, we appeal to relations (5) and (13). The result is

ma(0) [ Kolp, 020 his () de = T(p),  a<p<oo. (20)
Fi]
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Similarly, from (5) and (14), we have
]
B [ Kot 09, O has (Bt = Tolp), O <p<b. QD)
4]

Now, invert (14) to find the value of g,(f) in terms of 7, and §,
and substitute this value of g,(#) in (20). There results an integral
equation containing the unknown functions 7, and T,. Likewise, the
relations (13) and (21) lead to a second integral equation for T, and 7.
Both these equations are Fredholm integral equations of the second
kind, and can therefore be solved by a straightforward iterative method.

Example. Solve the integral equation

a

[0 [1w)d o dpdt =Qo, b<p<a, (2
b {

which embodies the solution of the torsion of an isotropic and homo-
geneous elastic half-space due to a uniformly rotating annular disk with
inner radius b and outer radius 4. Comparing it with (1) and (5), we have

g(t)=td(t), g, =1 (6), g2(6) = td,(), (23)
fW=Qp, fil=Qp, O<p<a; frlp)=0, 24)

b<p<ow,;
Ko(tp) = [Julpp) (o0 dp @5)
0
where
0, Osgp<bd,
p )+ (o) =3¢}, bs<psa, (26)

0, a<p<oo.

In addition, the kernel K,(¢, ) satisfies the requirement (8) in as much
as, for all g(#), we have

(-] o0

fKn(t, pyg(Hdt = Jg(t) J‘u’l {(pp)J ((p?) dpdt
1] 0

1]
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o

o <>J2‘°‘”'H
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J QOJ )

J%(pw).f%(pﬂ)(wv)% dvdwdp di

2 2)&5(12_0 15

i 4 5(w—u)(wv) dv dw dt
?TP. —wh)h(? —?)y%
o
min{p,r)
i P w? dwdt
w) (p*—wi)A(F —wh%
o o
2 f W Clo@didw
wp ) (PPowhE ) B WAR e
1] w

o

jKo(r, pgdt = j g(®) IJ 1(pa)J, (pt) dp di

Sy, (pw) s, (pv) dv dw dp dt

(wp)*2 (w? — pH)¥ (0* —

2) )

5(w b) dv dw dt

tg(f) H ) 0w

2

0

—pPYr(p? —1%)%
nt o w2 dwdt
! (= (o= 1Y
max(g,)
w2 [ 1g()dedw
W% ) oA S PsE

223

@

(28)

where we have used the formulas (10.1.12) and (10.1.13) and the equation

a

2\ Jovo w) W = {2]
Julpp) = (—:) P"J. +t&)(»‘2’_p2)% dw .

(w
']
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dw

—t—

.

at} ;\
0 : —r=g "
Figure 10.2
A
AN
. \
iy
\§
Q\ v
N t
e, 1Y N
o = Eﬂ\ t=g "
dw
Figurs 10.3

Furthermore, we have changed the order of integration in the steps

leading to formulas (27) and (28) as explained in Figures 10.2 and 10.3.
Hence,
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hy(p) = 2/mp, hiap)=p, k(o) = ljp,
hyy(p) = 2pim, hya(p) = 1/p, (o) = p, (29
Ky(t,p) = (p*—1)7%.

Furthermore, the kernel K, is such that the Volterra integral equations
(9) and {10) can be readily solved, and therefore the method of this
section can be applied.

The system of integral equations that corresponds to the system

(13)21) is

(8 dt Sip), O<p<a,
= 30
J(tz Py [*Tl(P), a<p<w, (30)
. J"r’ badt [T O<p<h,

s (p* —£2)% Sp), b<p< oo,
wal_(.‘zzf:=ﬂﬂa 0<p<a, (32)
2[ 0. bep<w, (39

d
pj(fi’z(f)z):‘& Ti{p) . a<p<w, (34)
2

p” Jfr(p‘f‘(g)‘: =T, O<p<h. (35)

The integral equations (30}-(33) are readily inverted and the resulis
are (see Example 3 of Section 8.2 and Example 4 of Section 9.3)

(36)

2 d [ t S () du w?}(u)du]

¢{p) = _E ;!’_0 (uz_pz)% - (uz_pz)% »
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b I
2 d W T, (W) du w? S, (u) du
“62(9) = TEPZ dp l:_o (pz_uz)% J (,02‘-"“2)%'] » (3?)
Qd  dt
51@)=;%J‘)m=2ﬂp, (38)
0
Sa(py=0. (39)

Substituting these values in (34) and (35), we get

& @
2p t L dtdu
T{p) = = J-“z T () j (12— pBy% (12 —ut)%
0 F.)

b
B 1 I w? Ty (u) o F (112,15 5/2;6%/p”) du (40)
P @A) =) ’
0
a<p<aw,
and
4 F.d o
o) = 4Q 3 dt +£ £ T, () dudt
0 = | e T | =R )
1] - 0 a
_ 89,0203 2.5_ 4‘12.02
S 3PP+ R YT\ U272 (P )P
0> [ T00,F (12,1552 p*u?) du
T @ETED J w —p7) ’ @D
D<p<bh.

In the above relations, ,F, stands for the hypergeometric function and
we have used the following relations pertaining to this function:

Cla w05
(ll_p?.)l,ﬁ(rz_u2)%_21-(5/2)(p2_u2) 24 2: ’2’,07' ]
14

u<p,
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p<u,

¢ £ di whp F, (12, 13502; 02 )
(p2— (i —ye U(5/u—p*
L1

3 dr 1 a%(ap)? il 3.5 4d?p’
(PP =@ — % 2T +a?)2 '\ U 22 (P +PY )
o
p<a.

Equations (40) and (41) are two simultaneous Fredholm integral
equations of the second kind and can be solved approximately by
iteration when we introduce the parameter 4 = b/a, such that 1< 1.
Indeed, the hypergeometric function ,F, occurring under the integral
signs in these equations is reducible to an elementary function:

1.5 x? 3y y+x
,F) (5, 1;5;}—2—) = E[ny—(yz—xz)log(yTx s x < y. (42)

Thereby equations {40) and (41) take the simple forms

1
] 24p 1 p+Au
Ti (a.a) = = J‘TZ (bu) [pz —_ ;..2 e - ;log (P —AH)jI du . (43)
[+

l<p<ow,

and

82 pla - 35 4i%p?
T L .o 2P
2b0) = e (1’ Y 012027

1 f 2up utip
+ Py J T, (aw) |:u———2 myrythe log (u — ip)jl du
1

O<p<l. (44)

We first attend to (44) and observe that

35 o X"
22 x ) =143 . 45
2F‘(’z’z”‘) + znzw_’, (43
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With the help of this value, we readily obtain the first iteration for T, as

4 14

80 20 )
Tobp) = 5 {;ﬁ ot + ”T + 0(,16)} . (46)

This value in turn helps us in solving (43) approximately

320a2°[ 1 2 61

In the above approximations, we have included only those terms that
are needed to evaluate the torque experienced by the annulus up to
0(A%).

Finally, we substitute the values of S, §,, T, and T, as given by
the relations (38), (39), (46), and (47) in (36) and (37), and get

0 pla__ I6°f 2P\ &
(}bl(p) = ?([1_(’92’!“2)]1& +45?T2 {(l+ 7 2,03
0 10 (1 OV (s Y P R
x[—;sm a+(l az) +2]1 p + 5% 8
158612 o (1Y o 1_22Y
x[ 15psm 2 (l az) +9(1 az)
PP\
+8(l—-3) ]}+ O(Ag)), (48)
a
4 Jp ., _ b b2\% éi ~4
di(p) = 32 {Zﬂ.[b sin P —(l pz) 211 pe
Bpr[150\ . _, b A h\%
+?F|:(~b—)sm B+2 l—p2 -9 l—pz
bY\¥
—8([—?) ]+0(25)}. (49)

Substituting these values in the relation ¢(p) =@, (p)+¢2(p), we
obtain the desired solution of the integral equation (22).
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10.3. GENERALIZED TWOQO-PART BOUNDARY VALUE
PROBLEMS

An integral equation of a more general type such as
[
[swr e di=fp), O<p<a, O
Q

where the kernels K, can be perturbed on the kernel K, (z, p) of Section
10.1, can also be solved by the present method. This necessitates the
splitting of the kernel X, as

K‘l (r’ p) = KO(I ,P) + G(Is p) L] (2)

where the kernel G (1, ) is in some sense smaller than K. From (1)
and (2), it follows that

[ Kol g1 di = f(p) - [ Glep)gde,  0<p<a. 3
4] 1]

The kernel K, (¢, p) satisfies the same requirements as those in Section
10.1. From (10.1.2) and (3), we have

i (p) [ Ky (v, p) U 001 [ g (03 (8 Ky (v, 1) dlt i

=fe) - [Gupgtydt, O<p<a. 4)

Now we attempt to put the right side of this equation in the form of the
left side as we did in equation (10.1.7). This is done by defining two
functions S{(p) and C(p} as in (10.1.5) and (10.1.6) and a new function
L(v,w) such that

G(t,p) = hi (oY) [ Ky (0. p) Ko 0, )y 0y ) Lo, W) dochw . (3)
oc

Thus, the integral on the right side of (4) takes the form

j Gt.p)g@dt = [ g(0yh, (YA () (equation continued)
{ 4]
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x [ Ka(w, ) Koo, 0 (s () Lo, w) ds dw
Qo0

= k(o) [ Ka(ws ) ha () [ Lo, W) ha (o)
Q ]

a

x [ K,(0,0g(Ohs( dtdodw, 0 <p<a, (6)

where we have assumed that various orders of integration can be inter-
changed. When we substitute (10.1.5), (10.1.6), and (6) in equation (4),
we get

() [ Kaow, p) i (00) S(w) dw = hy () [ Ka(w, ) COow) Ry (o) div
1] Q

i
— y(p) [ Ka(w, p)hy ()
0
x j L{v, w) S() do dw (N
1]
O<p<a.
From this equation, it follows that
Sy = Co) - [ Le.p) SWydv, 0 <p<a, (8)
0

which is a Fredholm integral equation of the second kind and can be
solved for S{p). The required function g(¢) is then obtained by inverting
(10.1.5).

Example. Solve the integral equation

a

[0 [ s (oo T o)) dpdt = Qo, O <p<a, (9

where
—i(k?—p*)*, kzp,
_ (k" =p°) P (10)
(PP—KY%, pzk.
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As explained in Section 6.6, Example 2, this equation solves the problem
of the torsional oscillations of an isotropic and homogeneous elastic

half-space due to a rigid circular disk of radius ¢ which is performing
simple harmonic oscillations.

Comparison of (9) and (1) gives

g() =), flp) =Qp, (1D

K, (1,0) = [ [pJi(o0) 1 (po)}7] dp -
¢

We split K| as in (2) with

Kolt,p) = [ J1(op)\(p1) dp (12)
¢

j(g - 1) T (po) T, (pt) dp

1]

2 d (wo)®

npt ) ) (o2 —wE (7w
00

x Up (5 = I)Jlé( o), (o) dp] dvdw.  (13)
D

By following the method of this section and botrowing the known
results in Section 10.1, we have

G(1,p)

hi(p) =2fnp, Mp)=p, Hh(p)=1p,
K(t,p) =(p*—)7%, 4

L(v,w) = oW [ [p(ply=D1T4(pohig(owydp,  (19)

C () d
S(p) = p f (f(_——’)p—z-)’—g, (16)
]
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2

2 [ wC(w)aw
and °
S@) = Ce)— [Lo.p)S@)dv, O<p<a.  (18)
1}

Equation (17) is readily inverted as shown in relation (10.1.17);
Clp) = 20p . (19)

Therefore, equation (18) becomes
S(p) = 2Qp — j L(v,p)S(t)dv, O<p<a. (20)
[H] .

The infinite integral (15) can be converted to a finite integral (see
Appendix A.2):

i(ow)® [ (P —p™)51 Hy O (p0) 5 (o) dp
¢
vZzw,
L(v,w) = { (20

k
iow)s [ D%k )41, (p0) Hy ™ (pw) dp
0

w2,

where H,,(" is a Hankel function of the first kind. This form of the
kernel is useful for small values of k.

With this much information, we can solve the integral equation (20)
approximately for small values of ak, which happens to be a dimension-
less parameter. For this purpose, we write it as

1
S(ap) = 2Qap —aJ'L(av,ap)S(av)du, D<p<l. (22
0

An approximate value of the kernel aL(av, ap) is obtained from (21)
by using the series expansions for the Hankel and Bessel functions.
The result is
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&’p didpp ot 8io®
L — =3 2 3 _ T a3 3
5t 1g v +p7) — o (ot p0)

G
X
+ — (5pt* +10p° v2 4 p”)

384
4ia’ 5 3.3 5 8
+ 5750 (B3po® +10p° v* +3p° &) + O(a"),
v=p,
al(av,ap) = < (23)
wlv 4idpy o Ri

5
3024 = % st p?
TR e TAC LA i CLa T

b 4 2.3, .5
+384{5p v+ 10p° v° +0°)
47
1575n
pFY,

-+

(Bpr® +10p% v +3p% ) + O,

where x = ak. By applying the straightforward iteration method to (22),
we obtain an approximate valie for S{ap) as

S(ap) = 2Qalc (@) p + c3(@)p* + cs(@)p® + c;(@p" + O@D)], (24)

where

o« din® 19«*  53id’ 16 143\ . 8051’
+ + N taam 15 — s

4  9n 192 225z \BlIrx? 3840 588007

S MO A § AR v/

00 = 13756 T a5z 3304 4200m°
d'.4 d'.ﬁ ia'? 6
¢s(®) = —5e0 " 3240~ Teson’ 7Y T zosd0

Finally, we invert (16) to get

a 1

_ Ei S@du _zﬁ S{au) du
A R ey Sl j ey PR Y
? pla
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From (24) and (25), we have
A R e G| =

ol - afr-5)-sa(-3)]

el sl B e )

-a(5)sel-2) )]

- %—7[;—2?—3 —5]—235 (l—g—i) + %(1 -z—j)z} + O(ag)} . (26)
When «— 0, this reduces to equation (10.1.18).

104. GENERALIZED THREE-PART BOUNDARY VALUE
PROBLEMS

Finally, we consider the integral equation

[xumgwa =1, b<p<a, )
b

which is the generalization of the integral equation (10.2.1) and the
kernel K, is to be perturbed on K, of Section 10.2. Indeed, we split it as

Kl(t$ p) = KO{I! P) + G(t’ P) ’ (2)

and assume that G (4, p) is in some sense smaller than K. With the
help of the relations (10.2.2)-(10.2.5) and (2), the integral equation (1)
becomes equivalent to the pair of equations

[Ktna@d =fi) - [Gepgwrd, O0<p<a, 3
o 0
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[ Kot g0 dt = £() = [ GE.pg(0dt, b <p <o, @
L] 0

Furthermore, the choice of the kernel K, is such that the requirements
embodied in the relations (10.2.8)-(10.2.10) are satisfied.

Now we extend the analysis of Section 10.3 and define two new
kernels L, (v, w) and L, (v, w) such that

Bus 0V his ) [ [ KaOw,0) Ko @01y 2(0) iz (0)
00

x Ly(p,wydodw ,
G, p) = 1 (5)

har () hss () [ [ Kz(oy W) Kot 0) haa () oy (0)

x Ly(p, wydvdw ,
where the A’s and the kernel K, are the same functions as occur in

(10.2.8). Thus, the integrals on the right side of the relations (3) and (4)
take the forms

[Gepg @ dt = [ g:Ohi (O3 ()
0 o

gt
x [{ K2, Ko @0, )12 (9) 21, 0)
00

x Li(v,w)dvdwdt,

= i@ [ Ko@) hia () [ Lo Wk ()
[ o

x | Ko, 09, (0 by (1) didod, )

O<p<a,
and
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[ 608200 = [ 920 ha1(0) a2
Q o

- allcel

x [ Koo, w) Ka(t,0) s (9) i 0)

X L, (v, w) dodwdt

= 2100 | Kz (oa W) haa ) [ Lao, Wy )
¥l 0

x [ Ky (6,0)g2(0)has (@) dtdodw, Q)
1]

hb<p <o,

where we have assumed that various orders of integration may be
interchanged.

From equations (3) and (6) and the first part of (10.2.8), we derive
the relation

hii(p) [ Ka(w, o) hip o)) [ Kyw, 09 (s (0) e
[ w
= /up) = kr(p) | KaOw, 02 (9) [ Ly (o, ) i )
0 0

x IKz(u,t)gl{t)hl-_,(t)dtdvdw, O<p<a. (8)

Similarly, from equations (4) and (7) and the second part of (10.2.8),
we have

hz;(p) J' Ky (p, w) T2 (W)]? _f Ky (£, w) g2 (D) ha3(2) dt dw

= £240) = a3 (0) [ Kalp, W) hyz ) [ Lo, ) hus )
F 0
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v
foz{t,v)gz(t)h23(t) didvdw, b<p<w®. ©)
]

The next step is to use in (8) and (9) the functions S;, S,, T;, Ts, C;,
and C, as defined by the relations (10.2.13)(10.2.16) and follow the
arguments of Section 10.2. The functions C; and C, are known in
terms of f; and f;, while the four unknown functions 5,, §,, T, and 7,
satisfy the following two simultaneous Fredholm integral equations of
the second kind:

$1@) + [ L) Si@) do = Ci(p) + [ Liw, Ty dv,  (10)
4] a

O<p<aea,

o0 )
$:(0)+ [ L@ p) S:0) do = C(0) + [ Lie,p) TV o, (1)
b a

b<p<oo.

The two Fredholm integral equations that are the results of equations
{10.2.20) and (10.2.21) when the values of g, and g, are substituted in
terms of §,, Ty, 85, and T, are the additional two equations that augment
(10) and {11). Thereby, the system has become a determinate one and
can be solved by iteration as in the previous sections.

Example. Solve the integral equation

[

[ 6@ [ Loli(op)T (oY) dpdi = Qp, b <p<a, (12)
b a

where 4 is defined in (10.3.10). This equation governs the problem of
torsional oscillations of an elastic half-space due to a rigid annular disk.
The functions g, f, Ky, Ky, and G are the same as defined in (10.3.11)-
(10.3.13). Similarly, the relations (10.2.27) and (10.2.28) remain valid
in the present case, while the kernel G'(#, p) becomes

Y (13)
G, p) = K%_ 1) Ji(pp) 1 (pt) dp (continued)
Q
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et
2 (wv)*
mpt J ) (o7 — WA (e — w4
o0
=]
P
X [Ip(-}; - I)J%(pv).!%(pw) dp:’ dvdw ,
[H]

@ oo (wv)_%
z )] W —ph(p? )%

ax

(13}

x [J}a (—?; - I)J%(pv).f% (pw) dp] dvdw |
v

which corresponds to equation (5) above. Thus, the functions h;; and
the kernel K, are the same as defined by the relations (10.2.29), while
the kernels 7., and L, are

Li(e,w) = w0 [ [p(ply = D1y (o) S (pwd dp,  (14)
Lye,w) = )% [ [p(p/9) =115 () Iy (pwydp . (15)
0 .

Note that L, (r,w) coincides with L(p,w) as given by (10.3.15).
The four Fredholm integral equations of the second kind for the
unkhown fuanctions §,, S, T, and T, emerge as

1
T (p) = £2(0) +m

&
xjusz(u)zfl(IIZ,l;5f2;uzfpz)du, a<p<oo, (16

P2

0
2

_ P
T2 = 10+ s
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0

| T () Fi(1/2,1;5/2; 0y du, 0 <p<b, (17
u(y’ —p?)

y

Sip)+ [ Li@p S0 do = 200 + [ L, Ti@) o, (18)
[ a

Quep<a,
@ b
$:(0) + [ Law.p) S:0) do = [ Ly, T30 dbo, (19)
b 0
b<p< o0,

where

2 2 d (S, () dudt
tf1(P) = _R_P j(pg_tz)%dtj‘ (ﬂz—tz)l'é N 0 < P < b, {20)
4] i

w3 ) .
2p 1 d (u?S,(u)dud:
b

2n

a<p< .

We solve equations {16)-(19) approximately by iteration when the
parameters ka and bfa are small. In view of the relations (10.2.42),
we can write equation (1_6) in the form

1
1 2lp 1 p+Au
Tiap) = £3(ap) + - j T3 (bw) [m - - log(m)] du, (22)
1]

i

1 <p< oo,

where A = b/a. Similarly, (17) becomes

-1}

| 1 2Aup u-+ip
Ty(bo) = £1(69) + 7~ j T (o) [uz_ 7 log (u_ Ap)] du, (23)
1

O<p<l.
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Let us observe that the parameters that occur in this problem are
o= ak, B = bk, A = bfa = Bla, (24)

and the discussion in the sequel is based on the assumption that « = O (1),
and, as such, f = al= O(x*).
We start with equation (18) and write it as

1
S1(ap) + a [ Ly (av,ap) S, (@) do
1]

=2Qap+ale(au,ap)Tl(au)dv, 0O<p<l. (25)
1

This is solved by setting

S,(ap) = X (ap) + W,(ap}, (26)
such that

1
X (ap} = 2Qap—aJ.L1(av,ap)X1(av)dv, Qcpel, 27
[+]
and

Wi(ap) = a J L, (av, ap) T, (av) dv
i

1
- ale(av,ap)Wl(av) dv, O<p<l. (28)
1]

The integral equation (27) is precisely equation (10.3.22) since the
kernels 1. and L, are identical. Therefore, X,(ap} is given by the
expression on the right side of (10.3.24).

Similarly, the integral equation (19) can be written as

o 1
S,(bp) + b j L,(bv,bp) S, (bv) do = b j L(bo,bp) Ty, () o, ~ (29)
1 [H]

l<p< o,

whose kernel can also be reduced to the following suitable form (see
Appendix A.2).



10.4, GENERALIZED THREE-PART PROBLEMS 241

f k
i(po)# [ [P 106> ~p2%1 0, (pp) HY) (p1) dp

vzp,
Lz(v,p) = 1 (30)

k
i(po)* [ [p2( —p?Y¥10, (o) H) (pp) dp »

| p=u.

Using the expansions for Bessel and Hankel functions, we readily
derive the approximate formula

o? [p*60) + 0], vz o,

(B
o R [@*6p) + 0(D)], p=v.

bL,(bv, bp) = {

The functions occurring in the system of equations (16)—+(31) are to
be calculated in the order X,,#,, 75, S5, ¢5, 71, W,, §;. Having found
X,, we can proceed to evaluate the other functions of this sequence.
The required results, obtained by one iteration, are

212 2 4'3 3 2192
t1op) = 22 [(1—“——ﬁ)+ r2 +0(a4)],

3n 3 9 3 (32)
D<cp=<l,
Ta(bp) = £,(p) + O@), O<p<l, (33)
a2 1 ,
_ a7 1 34
S, (bp) e |:p+0(rx)j|, l<p<ow, (34)
8Qaa?A* [ 1
4 =——| = 2 1 ) 35
200 = = [p + 0 )] <p<w (3
32Qar° [a? 1 2 1 f6A2
T = A —_ -2 — 2 O ,
1 (ap) 3502 |:4p+p3(l 3+7;)+p5(7)+ (rx)]
1 <p< oo, (36)
8Qan? A*
Wiap) = ——"[p+ 0@}, O<p<l1, )

4572



242 10 / APPLICATIONS TO MIXED BOUNDARY VALUE PROBLEMS

295

s,(ap)zx,(ap)+%+0(a“), 0O<p<l. (38)
In the above approximation, we have included only those terms that are
needed to evaluate the value of the torque experienced by the annular
disk to O (&%)

The values of g, and g, are obtained by inverting (10.2,13) and
(10.2.14) with 5, 83, Ty, and T, as given by the above formulas. Then,
the value of the function g follows from (10.2.5) and that of ¢ (p) from
the relation ¢(p) = p~ g(p).

Finally, let us note that the method explained in the previous sections
requires the following modifications when applied to problems that
relate to spherical caps and annular spherical caps (or spherical rings):
change ato o, bto §, p to 8, o to n, and replace the equations (10.2.2) by

o 6 ¥
ﬂ®=h2%m6mg)=fnm+ﬁwh (39)
where
£ = Zﬂ a,(tan%)', 0<8<a, (40)
-1 G
1,0 = rzma,(tani) , B<B<n. (1)

Here, 8 is the polar angle and « and § are the bounding angles of the
annular cap.

10.5. FURTHER EXAMPLES

Example 1. In Section 6.3, we found that the integral equation

oy = [g@Ke@p)dt, 0<p<a, (1)
[

where
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Ko(t.p) = 2n [ J,(pp)d,(pt) dp @)
0

embodies the electrostatic potential problem due to a circular disk of
radius g charged to a prescribed potential f(p)cosneg. Following the
analysis of Section 10.1, we get, for all g(s),

.[Kc(‘, P g(tydt = 2n jg (0 IJ,,(pp)Jn(pf) dp dt
b o b
= j g(:)J (pt)"
[H] 1]
J,_ %(pw).f,, é(pu){wv)"*"ﬁ dodwdpdt
whk (12 —o?)%
_ i u S(w—vY(wr) dodwdt
B P"a ' g(t)JT —wih (12 —p¥y
a mingg,)
_ A [ 0 w2 dw di
A (PP =AY =)
8 ¢
s a
4 win t="g(8) dtdw
N2 (p’—wZ)%I @i 0<rsa O
1]

where we have used the relations (10.1.12} and (10.1.13).
Comparing (3) and (10.1.2), we obtain the values of the functions #,,
hy, B3, and K as
hi(p) = 4",  hi(p)=p",  hs(p)=p"",
Kyt p) = (p*— %)%
Moreover, this form of the kernel K, ensures the inversion of the integral

equations (10.1.3) and (10.1.4). The method of Section 10.1 is therefore
applicable in this case. Indeed, we have

)
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nff"‘g({)d{

S(P)= ms O{P‘*’-a’ (5)
£
4 [wS(w)d
W W
f(P)=?6[(pg v e 0<p<a. (6)
Inverting (6), we get
() = " d r"“f(r) dt

2;: dp ] 7= oyA @

which gives the value of the function S in terms of the known function £,
Substituting this value of § in (5} and inverting it, we recover the value
of the unknown function g:

2 d [ w!T"S(w) dw

g{)————

@ T ®

For this special case when the disk is kept at a unit potential, then
flpy=1, n=0. Equations (7) and (8) take the simple forms

o) = 2_“' dp .[ (p*- 2)‘f‘i 27: (%)
and
Ld [ wdw .
TR = .0
9 (1) w? dtj(wl_fz)% ﬁz(az_tz),,i, O<t<a. (1)
r

Incidentally, we can evaluate the capacity C of the disk without
finding the value of the unknown function g. Indeed, the formula for
capacity is

C=2njg{:)d:.
[H]
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Substituting in it the value of g(f) obtained from (8} after putting
rn =10, we get

C = 4f5(w) dw = 2ajz . (11
H
Example 2. The equation
1 = f:g(z)Kl(t,p) dt, O<p<a, (12)
where' ’
Ki(t,p) = f[PJO(PP)Jo{Pt)f?] dp , (13)
[

is the integral-equation formulation of the problem of acoustic diffraction
of an axially symmetric plane wave by a perfectly soft circular disk of
radius « (see Section 6.7, Example 1).

To solve (12}, we split the kernel X as

Ki(t,p) = Ko, p) + G4, p)
where

Ko(t.9) = [ Jo(pp)o(pt) dp (14)
and

G, p) = [ o —11o(pp) o (P dp . (15)

Thereafter, the analysis is similar to the one given for the integral equation
(10.3.9) of the example treated in Section 10.3.

Example 3. Electrostatic potential problem due to a spherical cap.
A spherical polar system (r, 0, ¢) is chosen so that the cap is defined
by r=a, 0<0<a 0<¢<2r (see Figure 10.4). We consider the
axially symmetric case when the potential on the cap is given by f(#).
Thus the boundary value problem is
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Figura 10.4

VV(r,0p)=0 in D, (16)

where D is the region exterior to the cap. By following the method of
Chapter 6 (see Exercise 9 of that chapter), we find that the integral
representation formula for (16) is

@ 21

V(r,0,9) = a* J' j [a(t)/R]sin ¢ do, dt , (18)
00

where o (¢} is the charge density at the point ((a, ¢, ¢,) on the cap and

R = (r*+a®—2arcosy)?, cosy = cosfcos 1+ (sindsin)cos(p —g,).

Applying the boundary condition (17), we obtain the Fredholm integral
equation of the first kind

6 = azf(sint)a(t) K,0d, 0<0<aua, (19)
L]
where
dep;
o

in
Ky(t, 6) = J\m . (20)
0



10.5. FURTHER EXAMPLES 247

The next step is to expand the integrand in (20) in terms of the
spherical harmonics ¥,"(8, ¢):

1 _1 S =m0, Y (1,60)
(2 —2a* cos P)e aZOmZR (n+|m|)! - @)
From (20) and (21), it follows that
21 <
Ko(t0) = = Zﬂ P,(cos8) P, (cos 7) , (22)

where P, is the Legendre polynomial. We can put (22) back into the
integral form if we use the Mehler-Dirichlet integral

_ B
Pulcost) = %:z % ; (23)
4]

and the result

= 1 1
Z cos(n+~)wcos(n+~)v = Ea(W—U), 0<wov<m, (24
= 2 2 2

The kernel Ky (7, &) as given by (22) then becomes

-1

!

o{w—u) dvdw
(cos w—cos )% {cosv —cos 1)

Ky(1,8) = (25)

[=1 S

2

a
1]

The relation that corresponds to (10.1.2) for the present case is

3 min{#,¢)

Kot =2 [900

0 9 0

dw dt
(cos w—rcos 8)%(cos w—cos )%

g{t) drdw

¢
2 1
== , 26
a J {cosw—cos @)% | (cosw—cos % (26)
o w

O0<0<uo.
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Hence,
() =2/a, "=t =1,

K,(t,0) = (cost—cos#) ™% . @n

Similarly, the relations that correspond to (10.1.5) and (10.1.6) are

_ r’:aza(l)sinrdt
S(6) = j(cos@——cos e’ 28
¢
and
8
£0) = 2 S(w) dw

—_— 29
a | (cosw—cos0)¥ (29)
0
The integral equations (28) and (29) are simple Volterra integral
equations and can be easily inverted. In fact, the inversion of (29) is
readily achieved from Example 2 of Section %.2, and we have

@ d [ fOsin0do
St = 2ndw] (cosf—cosw)?®’ (30)
L]

Similarly, the solution of (28) is
I d{ S(w)sinwdw

" ratsintdt ] {(cost—cosw)%’
[3

a(t) = (an

and the integral equation (19) is completely solved.
As pointed out in Example 1, one need not determine the charge
density o (1) explicitly to find the capacity of the solid. Using the formula

C = 2na? j sin o (t) dt (32)
4]

and relation (31), it follows that

@

1 Y d [ S(w)sinw dwdt
C=2na* || — |- { —
™ j( naz) drj(cost—cos w)¥

0 !
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-2 S(w)sinw dw _ 2\/:_2'[5‘(149) cos(%) dw . (33)
a 13

(1 —cosw)*

For the special case when the cap is kept at a unit potential, that is,
fi8) = 1, relation (30) simplifies to

w

a d sin 0 d0 a w
SW)=—— | —m— = — =1 34
) 2n dw _[ (cosO—cosw)%t /2 cos( 2) (34)
o
From (33) and (34}, we have the value of the capacity as
C = (a/n) (a + sinw) . (35)
EXERCISES

Extend the analysis of Example 1 in Section 10.5 to the following
two exercises:

1. The disk is bounded by a grounded cylindrical vessel of radius b such
that a/b <€ 1. The disk and the cylinder have the common axis.

2. The disk is placed symmetrically between two grounded parallel
plates z = + & such that a/b < 1.

3. Instead of the whole disk, consider the case of an annular disk and
extend the analysis of Example 1 of Section 10.5 accordingly. Do the
same to the problems in Exercises 1 and 2.

Solve the problems of acoustic diffraction of an axially symmetric
plane wave for the configurations in Exercises 4-7.
. A perfectly rigid circular disk.
. Perfectly soft and perfectly rigid annular disks.
. Perfectly soft and rigid spherical caps.
. Perfectly soft and rigid annular caps.

@ =l oo

. Solve Exercises 1 and 2 when the solid is a spherical cap instead of
the circular disk.

For details on mixed boundary value problems, the reader is referred
elsewhere [8].



INTEGRAL EQUATION CHAPTER 11
PERTURBATION METHODS

11.1. BASIC PROCEDURE

In the previous chapter, we solved the Fredholm integral equations
of the first kind by converting them to Volterra integral equations and to
Fredholm integral equations of the second kind. One of the reasons for
the simplicity of that formulation was that we had only one variable
of integration. We need to develop methods which solve the integral
equations relating to boundaries such as a cylinder or a sphere. In this
chapter, we shall deal with three-dimensional problems and present
approximate techniques for solving the Fredholm integral equations of
the first kind

APy = [ K(P,Q)g(Q)dS, PeS, (1
N

with P =x and 0 = &. The analysis for the corresponding plane problems
is simpler once the method is grasped.

In the previous chapter, we noticed that certain perturbation par-
ameters naturally arise in physical problems. Let ¢ be such a parameter
occurring in the integral equation (1), Then, we expand all three functions
K, /. and g as power series in &:

250
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K=Ks+eK +e*Ky+ -, 2
f=fot+tefi+fi+-, (3)
g=go+eg, +e g+ . 4)

Inserting these values in (1) and equating equal powers of &, we end up
in solving the integral equations

jKogodS =f, (5)
3

J.chidS=f1"J'K190dSs : (6)
5 &

[Kogads =1, [ KigidS— [ Ksgods, Y
5 & &

and so on.

For the above technique to be useful, the following conditions must
be satisfied: (i) Kq(P, Q) is the dominant part of K(P, Q) as in the
previous chapter; (ii} the integral equation (3) can be solved; and
(iii) the functions gg,g,,... are such that the integrals occurring on
the right side of equations (6), (7), etc. are easily evaluated.

Fortunately, in this method, it is only the integral equation (5) that
needs to be solved because the other integral equations in the sequence
have the same kernel.

In certain cases, an approximation to order (g) can be obtained
rather easily. Suppose that the function X, occurring in the expansion (2)
is a constant A (say), then equation (1) can be written as

SPY+ o = [ Ko(P, @) g(Q) dS + O, ®)
Y

where

f=-4[gds,
&

is a constant, although as vet unknown. Then, to order &, equation (8)
is similar to the integral equation (5), whose solution is assumed known,
and therefore can be solved. The quantity /* can then be evaluated
from diflerent considerations. The occurrence of a constant A can be
demonstrated by the kernel
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expiz|x— expier 1
K(P, Q) = pigjr_&| _ exp =~ +ig+ 0.
|x—&| r r
Here, Ko(P, Q)= 1/rand 4 =i.
In the special case when the kernel X is only of the form K+ 4, the
analysis is further simplified. Indeed, suppose that the solution G(P)
of the integral equation

[k O)G(@ds =1, Pes, )
5

is known and we are required to solve the equation

f[A + Ko (P, Q)] g(Q)dS = 1. (10)
by

We can write (10) in the form

[Ko(P, @) g(@)dS = 1—4 [ g(Q)ds. (11
& 8

Although the value of the integral on the right side of (11) is so far
unknown, it is nevertheless a constant, as pointed out earlier. We can
therefore divide both sides of equation (11) by the constant factor on
the right side and obtain

[ Ko, Q) g I[1-4 [ gt ds|yds = 1. (12)
5 N

Comparing (12) with (9), where the value of ' ({) is known, we have
9(Q) <[ 1-4 [ (@) 4] G(Q). (13)
5

Integration of this expression over the surface S and a slight rearrange-
ment yields

jg(Q) ds = U G(0) dS]/[HAfG(Q) ds] . (14)
& & &

Subsequently, the substitution of (14) in {13) vields the solution g{(P)
of the integral equation (10):

g(P):G(P);[HAjG(Q) ds]. (15)
5



11.2, APPLICATIONS TO ELECTROSTATICS 253

This result can be extended to the case when, instead of the constant A
in equation (10), we have a separable kernel with finite terms. Suppose
again that we know the solution of the integral equations

[ KotP, ©)Go(Q) dS = f(P),  Pes, (16)
R

and
[ kP, QYGUQ dS = (P ;. PeS, i=l.,n; (17)
&

then we can solve the integral equation
[P0+ ¥ 6(@uPg(@dS = /P, (1®)
8 =

where the ¢;(Q) are known. To accomplish this, we write (18) as

[ k(P Qg(@ds = fP)-FCwuP).  Pes.  (9)
S =

where

G = [ 6:(Q)g(0) dS

are constants, as yet unknown. The rest of the steps are a simple
repetition of the ones used to solve the integral equation (10).

We now apply these ideas to various disciplines of mathematical
physics and engineering. In the sequel, we shall let G{(x;§) be the generic
notation for the Green’s function as in Chapters 5 and 6. In view of the
expansion (2) for the kernel X, we shall write Gg(x;E) for E(x;&).

11.2. APPLICATIONS TQ ELECTROSTATICS

As a first illustration, we turn to boundary value problems in electro-
statics. Let there be two conductors with surfaces S, and S;; S, is
completely contained in S, and is kept at a unit potential, while the
potential on S, is zero. If @ denotes a characteristic length of §, and &
denotes the minimum distance between a point of S; and a point of
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S, then we have the perturbation parameter &£ = afb, which we assume
to be much smaller than unity.

In Section 6.4, we presented an integral representation formula for the
electrostatic potential in the region D between §, and §;:

1P) = [ G(P, Qo (Q) s, (1
8y

in terms of the Green’s function G{P, () and the charge density o.
Applying the boundary condition on S, equation (1) becomes

1= [GP,Q0(rdS, PeS,. )
8y

Following the method outlined in the previous section, we write G(P, Q)
as the sum of the free-space Green’s function G, (P, @) and the perturb-
ation term &, (P, Q) in (2) and get

L= [Go(P, Q)o(QydS + [ G/ (P, Q)o(D)dS,  PeS,. (3)
8y 5

If the conductor S; were absent, we would have only the first integral
on the right side of equation (3). Thus, the second integral represents the
effect of the conductor §; on the potential of S,. According to the
hypothesis of the previous section, we assume that we can solve the
integral equation (3) when the second integral is not present.

Note that we can always introduce a constant A and write G, =
A+ G,, where G, = O(A4g). For instance, one possible value of A is
the value of G, (P, @) for an arbitrary pair of points P and Q on ;.
Hence, the relation (3) can be written as

1= [ Go(P,Q)o(Q)dS + A [ 0(Q)dS + [ Go(P, Q}o(Q)dS . ()
A Sy L
Now define a new charge density ¢
o' (P) = a(P)/[l—Afa(Q) ds] , (5)
&

from which it follows that

[ods = L_]' o' dS]/[[HASJ: o' ds]. (6)

3
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Also, equation (4) can be written in terms of the density ¢’ as

= [ GoP. Qo (QdS + [ G,(P,Q)o"(Q) dS . Y
S, 5

From the above arguments, we conclude that the second integral on the
right side of equation (7) is O(g?) times the first one. Tf we neglect the
terms of this order, then ¢’ is the electrostatic charge density on S,
when it is raised to a unit potential in free space. Equation (6) therefore
gives the capacity C of the condenser formed by S, and S, in terms of
the free-space capacity Cy of S, that is,

C/Cy = (1+AC) ™" + 0%, 8
or
CiCy = 1 — AC, + O() . 9

If A is interpreted as the value of G, (P, Q) for any pair of points P, Q
on §,, then the result (9) is precisely the capacity that would have been
obtained had we used the perturbation procedure (2)-(4). The advantage
of equation (8) for determining the electrostatic capacity lies in the fact
that in many situations it js possible to show that, by a suitable choice of
A, the formula (8) is valid for much higher order in &.

Example. We shall elucidate this discussion by the example of a
sphere of radius @ placed with its center on the axis of an infinite cylinder
of radius &. Recall that we gave an integral-equation formulation of a
general axially symmetric problem of this nature in Example 2 of
Section 6.5. In terms of cylindrical polar coordinates (p, ¢, z), we found
that

o

Gi(p 0, 2,01, 01,71) = 2 (2—80,)GP(p,2;py,2,)cosr (@ —5), (10)

=
where

o

2 fr I K (pb
= ‘[ 1,(pp) 1, (pp1) K, (Pb) cosp(z—z,)dp, (1n

G = —
‘ 1,(pb)
0
while the points P and Q are (p,¢,2) and (p,,®,,2,), respectively.
In view of the axial symmetry, we need only the term G® in the above
formula.
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The next step is to find the constant 4 in the relation (4). For this
purpose, we first set

z = qacosf, p = asinf, (12)

where & is the angle between Oz and OP, where O is the origin. Then
(11) becomes

2 Re j‘fo(pasm 0) I, (pasin 6,) K, (ph) pateor8—con61) . (13)

GO
' T Iy(pb)
0
where the “Re” means that we take the real part of the expression.
Secondly, we use the formula
ol

Io(pasin@)e'Prest = Z Upasin OF 0) P,(cos®), (14)

where P, are the Legendre polynomials. From (13) and (14), it follows
that

GO, Q)= —= Re IZ( 1" (5" (Pﬂf::'lf’)" (pasin )"

o m!
x E’((*"g P,(cos8) P, (cosd,) dp (15)
- _;Z—b Re f{— 1)"‘(;')'"“(—6% P (cos ) &3 )" Si:j‘)m
§
x P, (cos Ui)u""”’in((?d
= _Fl; Re[Zs”A,P,,(cosﬂ)][Z e"A,,P,,(cosG,)] , (16)

where u = pb and ¢ = a/b (the dimensionless parameter of the problem).
Furthermore, the constants 4, are given by the formula

= (2/m) _f (=" @y [Ko W)l ()] du . (17)
0
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It follows from (17) that, when (#»+#) is odd, A4,, 4, is an imaginary
quantity. :
The required constant 4 is now available from (16) and (17):

A = —(1jb) A* = = fb) [ [KoGi/Io()] du . (13)

Substituting this value of A in (8), we have

CICy = [1— (2mb) CoIO)] ™", (19
where

I2m) = 2m+1) f [ Ko ()1 ()] du (20)

for which numerical tables are available [5].
By careful examination, it can be shown (see Exercise 1) that the
above value of the capacity is correct to order &°.

11.3. LOW-REYNOLDS-NUMBER HYDRODYNAMICS

Two kinds of linearized equations govern the flow of an incompressible
viscous fluid: Stokes and Oseen equations.

Steady Stokes Flow
We have studied these equations in Example 3 of Section 6.7. Recall
that, for a free space, the boundary value problem is
Viq=gradp, divq=0; 4y
q=¢, on §; ¢ -0 at ;] 2)

where this system has been made dimensionless with the help of the
uniform speed U/ of the solid and with its characteristic length «; here,
e, s the unit vector along the x, axis. The integral-equation formula for
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this boundary value problem was found in terms of Green’s tensor T,
and Green’s vector p, to be

e, =—{ 0T, dS, Pes,, (3)
5
where
f = (dq/on) — pm , 4
T, = (180 AV |x—&| — grad grad [x—E]),  (5)
and

p, = —(1/8m)grad V2 |x ~§| . )

The corresponding formula for the resistance F_ (the subscript
signifies that we have an infinite mass of fluid) on the body 8 is found
by observing that the stress tensor has the value Ip+{Vq+(Vq)],
where (Vq) stands for the transpose of Vq. Using (4), we have

F.=[f.d5. )
51

This force can be related to the so-called resistance tensor ® , which is
defined to be such that the force exerted on a body with uniform velocity
uis @ u Thus, F,=F_ e=—®_-u, where ¢ is the unit vector in
the direction of u.

The solutions for various boundary value problems for steady Stokes
flow in an unbounded medium are known. As such, the solution of the
integral equation (3) can be found for these problems. Henge, the tensor
T, corresponds to the kernel K, of Section 11.1. Below, we shall show
how the correction term may be obtained for more complicated cases
by using the ideas of Section 11.1. We begin with the boundary effects
when the fiuid is bounded by a surface 5,.

Boundary Effacts on Stokes Flow

The presence of the boundary 5, necessitates the introduction of a
new tensor T and a corresponding vector p (see Exercise 7 of Chapter 6).
These quantities satisfy the equations

V2T — gradp = [6(x—E) V-T=0 T=20 on S,. (8)
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When S, tends to infinity T and p reduce to T, and p, as given above.
According to the present scheme we write T=T,+T; and p=1p, +p;
where T, and p, satisfy the homogeneous part of the system (8).

The integral equation that is equivalent to the present problem is

¢ = _J' £+T dS = _J' (T, +Ty) ds . %
5 8y

Along with P and @ let us take the origin also on §,. Furthermore, let
£ again be the parameter that gives the ratio of o, the standard geometric
length of the solid B, to the minimum distance between a point of S;
and a point of §;. Then, by Taylor’s theorem, we get

T, = T,° + r-[grad Tyle-g=0 + g'[gfadoTz]x=§=o + 0%, (10

where T,°=T,(0,0) and the superscript zero on the grad implies
differentiation with respect to the components of & Taking only the
first-order terms of the relation (10) in (9), there results the equation

e, + F-T,° = —jf—Tl ds, (11)
&y

where F is defined by relation (7) without the subseript co in that relation,
that is, F is the resistance experienced by B in the bounded medium.
The integral equation (11) has the same kernel as that of (3) and, as such,
can be considered to give the velocity field in an unbounded fluid when
B is moving with uniform velocity e, + F+T,° If we now utilize the
concept of the resistance tensor @, as defined above, we derive the force
formula F: '

F = _(el +F'T20) '(Dw . (12)
This equation can be solved to give
F=—e - [®T+T,°]71. (13)

Fortunately, replacing F by F_, introduces error of order &?, and thus,
to order g, the formula (12) becomes

F=—(+F_-T;°) . (14)

The principal axes of the resistance of B are defined so that, when B
moves parallel to one of them in an infinite mass of fluid, the force is in
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the direction of motion. They are the unit eigenvectors of the resistance
tensor @ . Let us denote them by i,, i,, and 1, such that

D, =@, 00 + Dgziyzi, + O 3i505. (15

Let us decompose T,° into components with these eigenvectors as the
basis. Furthermore, let us set e, =i,. Substituting these expressions in
the relation (12), we derive

FIF, = 1/(1—-AF.), (16)

where 1 is independent of the form of S,.

Longitudinal Oscillations of Solids in Stokes Flow

This analysis can be used to obtain an approximate value of the
velocity field generated and the resistance experienced by a solid of an
arbitrary shape which is executing slow longitudinal vibrations in an
unbounded viscous fluid. Let us assume that the body oscillates about
some mean position with velocity Ue'” e, and q and p have the same time
dependence. Then, the dimeasionless Stokes equations for the steady-
state vibrations are

—Vp +Viq—iMiq=0, divq=0, (17)

where M?=awfv is the rotational Reynolds number and v is the
coefficient of kinematic viscosity.

The integral representation formulas are the same as for the steady
Stokes flow, while T and p now satisfy the equations

—Vp+VET — iM2T = 18(x—8), divI=0, (18)

and T—0 as x— o0. These equations are satisfied when T and p are
given by the formulas

T =1V?¢ — gradgrad¢, p= —grad(V? -iM*H¢, (19)
(VZ—iM?) V¢ = 3(x—E). (20)

_1—exp{-[(1+)M/J/2] x—§l}
B 4riM? |x -] '

¢ 20
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Thus,
T =T, — [(1+i)/6nJ2] MI + O(M?), (22)

where T, is given by (5).

The next step is to substitute the boundary value q = e, in the integral
representation formula for the system (17) and observe that, in view of
equation (18) and Green’s theorem, we have

J(%%-pn)dS:—szj‘TdV, 23

5y R,

where R;is the interior of S,. The result is the Fredholm integral equation
of the first kind for evaluating f:

e, — [(1+i)6n /2] MF = —j T,-fdS+ O(MY), PeS,. (24
81

Following the previous analysis, we have the formula
F=0, (e, — [(1+)/6n /2] M(®,-¢;)} + OM?). (25)

For a body moving parallel to one of its axes of resistance (which we
can take as the x; axis of our coordinate system), equation (25) takes
the simple form

F=—F,{1+[(1+)/6nJ2] MF_}e, . (26)

For e)éample, for a sphere, F,, = 6nual/ in physical units, where a is
the radius of the sphere and p is the shear viscosity of the fluid. The
formula (26) then gives (in physical units)

F = —6mpalU[1 + (M//2)(1 +i)]e, + O(M?Y). 27

Steady Rotary Stokes Flow

For the rotation of axially symmetric bodies, the pressure is taken to
be constant and the steady Stokes equations become

Vig=0, divq=0, p=const. 28)

Let the z axis of ¢ylindrical polar coordinates (p, ¢, z) be the axis of
symmetry of these bodies. Assuming that the streamlines are circles
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lying in planes perpendicular to Oz, then q has a nonzero component
v(p, ) in the ¢ direction only and is independent of ¢. The equation of
continuity is thus satisfied automatically, while the equation of motion

(28) becomes
Mo 1év *v v
FromtE " @

which has been made dimensionless with Qa as the typical velocity.
Here, Q is the uniform angular velocity of the body and a is its character-
istic length. The boundary conditions are

p=p on §,; p=20 on §,. (30}
From (29), it is easily verified that the function

w(p, ¢,2} = v{p,z}cos (3D

is harmonic and can therefore be represented in terms of a source density
o(Q)cos ¢, spread over S, where & = (p;, ¢, 2;} are the coordinates of
¢ and ¢{Q) is independent of ¢,. Thus, we can use the integral repre-
sentation formula (6.4.24) for the harmonic function and get

w(p,9,2) = [ G(P, Q)o(Q)cos g, dS (32)
5

where P is an arbitrary peint in the region between S, and §,. On
applying the boundary condition (30);, we obtain

p= GO Qo(Qds, Pes,, (33)
) _

A

where =~ ! GNP, Q) is the coefficient of cos(¢—,)} in the Fourier
expansion of G(P, Q) and ds denotes the element of the atc length
measured along the curve C which is the bounding curve of S, in the
meridian plane.

Recall the decomposition

G(P, Q) = (1/x=8) + G,(P, @),

where G, (P, ) is finite in the limit as @ — P. We can, similarly, decom-
pose the Fourier component G¢*? into the sum

G = G+ GY",
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where G arises from the Fourier expansion of 1/|x—&| and G{"
arises from the expansion of G,. Therefore, we can write (33) as

o= J‘plGE,”o'ds+J.pin”ads. (34)
C C

Again let b represent the minimum distance between a point of S, and a
point of S,, and we have the small perturbation parameter £ = afb.
The second integral on the right side of (34) is at least of order £ of the
first integral. For geometric configurations for which

G = pp (4+G)), 35)

where A is a constant and G, is of order Ae, equation (34) becomes

p=J.plGE,')ads—i-Apjp12ads+pjp,2026ds, (36)
cC o C

or
p=f9105"a’ds+ﬂJ.Psza’dva (B7
C C

where
¢ = o/(l —Afplzads) : (38)
C

Consequently, we have the same situation as in the section on electro-
statics, that is, 6" represents, with an error which is at most of order &2,
an appropriate source density for the body rotating in an infinite mass
of fluid.

The tangential stress component t on the surface S, in the direction

of ¢ increasing is
d fv
T = pp 6‘_(_) , (39)
n\p

where &8fén denotes differentiation along the normal drawn outward
to §,. Furthermore, we know from the analysis of Chapter 6 that the
source density o () on §; is related to v by

dro(Q) = —p g (B) . (40)

an\p
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Thus, T = —4npe. From this value of the stress component, the value
of the frictional torque N can now be readily calculated to be

N = —Snzp_[pzads. 10
L5

The relation between this torque N and the torque N, in an unbounded
fluid may be obtained by integrating both sides of the relation (38)
around the meridian section C of the axially symmetric body:

N=N_[1+{A4/8m2uQQ)N_T" 1, (42)

with an error of order £2. By a suitable choice of 4, the formula (42) can
be shown to be valid in many cases to a much higher order in £. Equation
{42) can be illustrated with many interesting configurations. For example,
the case of a sphere which is symmetrically placed in an infinite ¢ylindrical
shell can be studied as in the analysis of Section 11.2. Formula (42)
then gives (see Exercise 5)

NNy = [l + (N, /87pQa®) H (] , (43)

where H, is given by the integral

&0

2= LK)
=z ! Jx AT Nk

H,

5

Rotary Oscillations in Stokes Flow

The equations governing the steady-state rotary oscillations (with
circular frequency e) of axially symmetric solids in an incompressible
viscous fluid are

Vi -iM¥H)q =0, Viq=0, (44)

which are obtained from (17) by setting p = const. As for the steady
rotational case above, the only nonzero component of q is the ¢ com-
ponent o, and the differential equations (44) reduce to solving the
equation

v 1dv v &%

AL L LN L P 45
i plp. B A A (43)
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where B? =iM?2. We present the analysis for|f |< 1. The boundary
values are

v=p on S;; =0 on S, {406)
where, as before, 5, is the surface of the oscillating body and §, is the
bounding surface.

By writing w = v cos ¢, equations (45) and (46) reduce to the following
boundary value problem:

(VI-phw =0, an

W= pCos¢e on S w=0 on S,. (48)

The Green’s function G(x:;§) appropriate to this boundary value
problem is

(V2= G(x:8) = —4n3(x-8), Gls,=0. 49)
Thus,
oy exp —Bx—§| _
Gy = =1 + i), (50)

where G, (x;E) is finite in the limit as & — x. The integral representation
formula for w(x) follows from Section 6.6:

wx) = [ 0(p,2)(cos 0 ) GBS, EeS,, xeR, (5D
5

where R is the region between .S, and §,, and 6(p,, z,) is given by the
formula (40). When we apply the boundary condition (48),, we obtain
the required Fredholm integral equation

peosg = [ a(piz,)cos @) G(x;B) S, (52
5,
with x and & on S,. Now, if G\ (p,z;p,,z,) is the coefficient of
cos{@ — ¢,) in the Fourier expansion of G, (x;E&), then the integration
over ¢, reduces the above integral to

exp —f|x—§|

x—g %

peosp = jaml,zl)(008¢1)

5y

+ ’T(COS‘P)JU(Pta21)0(1”(,0,2;91»21)91 ds, (53)
¢
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in the notation of equation (33).
The next step is to expand ¢ as the perturbation series

o=3%f0, (54)

in equation (53). Moreover, by direct expansion of the Green’s function,
it can be shown that G§'’ = O (¢%), where g is the ratio of the characteristic
length of the vibrating body to the distance of its center from the nearest
point of §;. It is assumed that g = 8/e = O(1).

Now, equate equal powers of § on both sides of equation (53) and
get (after omitting terms that trivially vanish)

peose = [ ay(py,7,) [x—&| ' cos 0, dS, (55)
51
0 = [ o1(piz) [x—8| " cos g, dS , (56)

5

0= J‘Uz(Plszl)l"_ériCOS(Pl as

8

+1 [ o012 Ix—8lcos g ds, (57
8y

0 = [ o3(p1,2)) [x—&| ' cos ¢ dS

5y

+4[ o102 |x—E| cos g dS

— 4 [00(o1,2,) [x—E[>cos @ dS
51

+(cosg) [ oo(pi2) Hip, 230120 prds,  (58)
C

and so on, where
G{'Np.z3p1,2,) = BPH(p,z;p1.2,) + O(8%) . (59

1t follows from (55)—(58) that the source densities g, ¢, 64, 04, etC. are
determined by solving potential problems in free space of the form
encountered in Chapter 6.
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The velocity field and the frictional torque can be readily calculated.
Indeed, for the evaluation of the torque ¥, we use the formula (39) and

obtain
d{fv é{v
N = 2 _(Z)ds =2 P Z}ds.
ufﬂ ” (p) T f.o Ew (p) ds (60)
5 C

From the relations (40), (54), and (60), it follows that
N = =8n2u [ p*(0g+Bo,+B20, +20) ds + O(F%) . (6])

C

Since potential problems of the type given in equations (55)(58)
can be solved for various configurations such as a sphere, a spheroid,
a lens, and a thin circular disk, we can solve our problem for all these
geometric shapes. As an example, we consider the case of a thin circular
disk vibrating about its axis in a viscous fluid which is contained in an
infinite circular eylinder. The axes of the disk and the cylinder coincide.
The Green’s function for an infinite ¢ylinder —c0<z< w0, 0K psh
can be found by following the steps of Example 2, Section 6.5. The
result is

—Blx—- 72
G(x;§) = ‘“plx—ﬂ_'ay — =2 (2= o) [cosn(p—py)]
mK b
x f 8 L0 Tlpo) eos L0~ e 20D
; _
p dp
T “

from which G{'? for the disk p <1, 0 € ¢ € 2r, z=0 may be readily
obtained:

[-+]

1
GV (o, py) = —z—xsappif

q

K 3 d

or
H(p,p;) = —(1/2nq*) pp, A(g) . (64)

Here, A(g) stands for the infinite integral in equation (63}.
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The integral equations (55)—(58) can be solved by the method of
Sections 6.4 and 6.5 (see also Exercise 2 of Chapter 6). The solutions are

2p p2=p3
_= = 0 = ———
%o J'Cz(l _pz)lé ] o 1 L) 3‘”2(] ",02)1& ’
(65)
4 2 1 P
= L -2+ Sdlp| ——= 0 < :
7y 3752 |: 3 + ﬂ:qB (q)] (l _pz)'.’i v £ < 1

Substituting these values in equation (61), we obtain the value of the
torque, which in physical units is

—_ 32 3 1 2 i 3 4 3 ooy 4 5
N-—3,uQa |:1+5ﬁ %ﬁ Tyt A(@) | € + OB, £%). (66)

Oseen Flow-—Translational Motion
The slow motion past a solid as studied by Oseen is governed by the
dimensionless equations (see Example 4, Section 6.7) _
R qjdx = —gradp + Vg, divgq =0, 67
q=-e; on §,; q=20 on §,. (68)

The Fredholm integral equation of the first kind that is equivalent to
the boundary value problem (67)-(68) is given by (6.7.52):

e, = —J.T-de, (69)
5

where the Green’s tensor T and the Green’s vector p are now defined as
T = (1/8x) [1V? ¢ — grad grad ¢] , (10)
p = —(l/8n)grad(V:¢ — R3¢/0x,), |’
lerls

6 = (Ul [ [a—eyA dr, (71
Q

and

s = |x—&| + (#/|R[)(x, ) -
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By using the series

l—e“_1 r+t2+
t 217 31 ’

we expand ¢ in (71) in terms of the Reynolds number. The relation
(70), then becomes

T=T,+ 0%, (72)
where T, is given by (5). The rest of the analysis is similar to the one

given in the subsection above and is left as an exercise for the reader
(see Exercise 9).

Oseen Flow—Rotary Motion

By using the present technique, the solutions of the Oseen equations
can be presented also for the steady rotations of axially symmetric solids.
As in the corresponding Stokes flow case, we take p = const. Then, the
Oseen equations take the simple form

R(0qjox,) - Viq =0, divgq=0. (13

Again, in view of the symmetry, only the ¢ component F of q is non-
zero and in cylindrical polar coordinates (with z=x,) the boundary
value problem becomes

e S ) S L 4 v

5.02 Ea_p—;z'l‘azz— CEZO, (’:"‘4)
where ¢ = Ua/2v = /2. The boundary conditions on ¥ are
V=p on §; V=0 on S,. (75)

The substitution of V' = ¢ v(p, z) reduces this boundary value problem
to the following one:

Fo 1o o o
&p> pép PP 82
v = pe*t on §; p=0 on S;. (77

— =0, (76)

Equation (76) is the same as (45) with # replaced by ¢. However, the
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boundary conditions (77} and (46) are different. By repeating the
algebraic steps (47)-(33), we end up with the Fredholm integral equation

pescosg = [ 6(p1.2;)(cos o) [(exp —¢|x—E|)/|x—8[1dS
&

+ nlcosg) [ 0(p1,2) G\ (o3 p1,2) Py s (78)
[y

for the evaluation of ¢(p, z) defined by the relation (40). Although the
only difference between the integral equations (53) and (78) is in the
expression oa their left side, it leads to a much more difficult analysis
for the present problem. To solve (78), we again take the expansion
6=y, "0, as in (54) and also expand pe® cos ¢ in power series of ¢,
By comparing the equal powers of ¢ in (78), we obtain the following
integral equations of potential theory:

peosp = _[go(Piszi)!x_érlCOS‘Pl as, 79)
8y

pzeosg = [ o1(p1, 7)) [x—§| ' cos g, a5, (80)
5

Ypzicosp = jaz(pl,zx)lx—f‘,l"cowl das

35

+4 [ 66(p1, ) [x—§|cos @, dS, @1
S

dpz’cosg = I o3(p,2) |x—&| "' cos ¢; dS
51

+4 [ 0161, z) [x—g|cos g, dS
5

— 4 [ oalpr,z) [x—E|*cos g, dS
h

+(cos @) [ ao(prz) Hip.z3 pryzi) pr ds, (82)
[ &y

where H(p,z;p,,2;) is defined by relation (59).
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For a thin circular disk z =0, p < |, the system of equations (79)-(32)
is the same as the system (55)-(58). Thus, the solution for the steady
rotation problem for the disk in Oseen flow is the same as the correspond-
ing solution for the steady-state vibrations in Stokes flow. For example,
the value of the torque ¥ in the present case can be deduced from the
formula (66):

N——:E Qa® I-l—c—2—4—cs+is:’A( )}4—0(64 &%), (83)
B 5 on 32t YW E
where Q is the uniform angular velocity of the solid.

For other configurations, one has to solve the integral equations
(79)-(82) with nonzero left side. We illustrate this by considering the
rotation of a sphere of radius 4. In this case, it is convenient to take
spherical polar coordinates (r, 0, ¢). The value of the Green’s function
G(x;E) is the same as (62) with § replaced by ¢. The corresponding
values of G{) and H(0,8,) are

Loy o o TKO) P dy
(1) . £ Y ay 5
GV (8,00 5 & (sin #sin 01).[11@) 02 =gy + 0%, (84)
4
and
1 . .
H(0,0) = o (sin@sin8 ) A(g) . (85)

The source densities oy, 7;, 7,, and ¢, are determined from (79)82)
by the method of Chapter 6 (see Example 2, Section 6.3, and Exercise 1
of Chapter 6). The result is

oo = (3/4m)P, ' (cosO) ; o, = (5/12m) P,  (cosB) ;
o, = (1/4m) [(3/2) P, (cos O) + (7/15) P35 (cos B)] , (86)
63 = —(3/4m) P, (cos ) [(1/3) + (1/2n4*) A (g}] ,

0 < 0 < m. Substituting these values in the torque formula (61), we
obtain (in physical units)

4t 3

N=—8mQa|1+ ——- -+ L£3A(q) + 0t . (8D
15 i 2x
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11.4. ELASTICITY

The Navier-Cauchy equations of elasticity are very similar to the
equations of Stokes flow and, as such, can be solved rather effectively by
this technique. To demonstrate this we first discuss the displacement
field in elastostatics.

Elastostatics

The dimensionless equations of elastostatics are
GA+wgrad 0+ pvVia =0, 8 = divu, (48]

where u is the displacement vector and 4 and g are the Lame constants
of the medium. The above equations have been made dimensionless by
a suitable characteristic length @ inherent in the problem. We want to
find the displacement field generated by the light, rigid obstacle B with
boundary §, which is embedded in an unbounded elastic medium and is
given a uniform translation d, (dy/a in dimensionless units). Thus, the
boundary conditions are

u = (dy/a)e on §; u—=90 at . (2)

The Fredholm integral equation that is equivalent to the boundary
value problem (1){2) is (see Exercise 8, Chapter 6)

(doja)e = — J‘ fT, dS . 3)
5y

The Green’s tensor T; and the dilation vector 8, are defined as

. __1__ 23_,0. 5:; At g (xt_ét)(xj_‘fj) (4)
U gm| A4+2u [x—§| A+ |x—g® ’

__l s xoe
0= A o g @

while f is
f = u(dujdn) + (A4 ) 0n . (6)
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Since the traction field t is defined as
= ABr; - png(u p—u; ), (M

where by »; ; we mean Jw,/0x;, we note that the formula for the force F
acting on the body B is

F = J‘de‘ (3)
&

As in the cases discussed earlier, formula (3) is the starting point for
obtaining the corrections due to the boundary effects as well as the
dynamic effects. We assume that the solution of the integral equation (3)
is known,

Boundary Effects

Let the elastic medium be bounded by the surface S,. Within §,,
we define the fundamental tensor T and the dilation vector 8 in the
same way as T, and 0,. The integral equation corresponding to (3) is

(doja)e = — f £-TdS . 9)

5y

Set T=T,+T,, where T, is given by (4), and T,, which gives the
boundary effects, is regular in the region under consideration.

We nowintroduce the concept of the traction tensor, which is analogous
to the resistance tensor defined in Section 11.3, and denote it by @
for an infinite elastic médium. It has the property that the total static
force F, exerted on a body that has been given a uniform displacement ¥
within an infinite elastic medium has the value —(d,/a)® -v. For the
case of the bounded medium, the corresponding traction tensor is @,
while the corresponding static force F is equivalent to —(d,/a)®-v. The
rest of the analysis is the same as given for the boundary effects on
Stokes flow.

Elastodynamics

Here, we derive the dynamical displacement field in an infinite elastic
medium in which is embedded a light, rigid body, This body is depressed
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by an amount de = d, ¢ e by an exciting force of the same frequency.
The dimensionless steady-state equations of elastodynamics that govern
such a motion are

[(A+w/]grad® + Viu+min =0, (10)

where the number m? = p, 0? ¢*/u, and p, is the density of the medium.
Two other numbers also appear in this analysis. They are

M? = po?d/(0+20), t=Mm, M=0(m).

The integral representation formula for the equation (10) is easily
found to be '

u(p) = —f {{-T — u-{p(dT/dn) + (A+u)8n)}}4dS , (11)
8

where f is defined by (6). The Green’s tensor T and the dilation vector
0 are given by the formulas

A+ p
A+ 2u

0 =divT, (13)

T = SL[I(VZ—i-MZ)(ﬁ— grad grad gb], (2
7
where ¢ satisfies the differential equation
(VE+m) (V- M2 ¢ = 8nd(x—8) . (14)

An appropriate solution of equation (14) is

B 2 exp —iM[x—§| exp—im|x—§|
¢= mz_w[ x—% x—% ] 4
For M < 1, (13) becomes
T =T, — (120) (> + 2 ml + O(m?), (16)

where T, is given by (4).

Since there are two wave velocities involved in this problem, they
should satisfy the radiation condition at infinity, while the boundary
condition on §, is that u = (dy/@)e. When we substitute this value in
equation (11) and follow the corresponding analysis for the unsteady
Stokes flow in the previous section, we obtain the force formula as
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_ d, Iy dg )
=@ [me_IZW(T +2)m(£I @ e)]-}-O(m). (17
For axially symmetric solids, (17) takes the simple form

a F,i
= — 14+ 2342 2y
F Fw[ +d0 1215(1. + )m]e+0(m) (18)

The value of the traction tensor @, can be given for various shapes.

Forexampile, for an ellipsoid with semiaxes ,, a,, and 4, in the directions
of the unit vectors e, e,, and e, respectively, we have (in physical units)

3
- 167 €€
@ = 16 #Z{(l—‘cz)aizaf+(l+tz)ﬁ}’ (19

where
o

o a fa
“= |erenam: P am
0 (4]

A2(D) = (a2 + D@ + (a7 + ) .

Rotation, Torsion, and Rotary Oscillation Problams in
Elasticity

The rotation of axially symmetric inclusions and cavities in an elastic
medium are governed by precisely the same partial differential equations
as are the rotation problems of Stokes flow as studied in the previous
section. We just have to reinterpret some of the symbols, For example,
¢ now stands for the modulus of rigidity and £ is the constant angle of
rotation.

The low-frequency torsional oscillations of rigid inclusions in a
bounded and isotropic elastic medium can be studied by the analysis of
the previous section on rotary oscillations in Stokes flow. Indeed,
denote the density of the elastic medium by pg, and interpret § as

B = —pyo’aifu. (20}
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Crack Problems in Elasticity

Let us now consider the problem of an axially symmetric crack with
surface S, inside an elastic medium bounded by an infinite circular
cylinder of radius b. The axes of symmetry of the crack and the cylinder
coincide. It is further assumed that the cylinder is maintained under
torsion by a torque applied about the axis of symmetry and that §,
separates the material and hence there is no stress across S,. The
mathematical formulation of this problem is similar to the rotation
problem of the steady Stokes flow. As in the previous section, we take
cylindrical polar coordinates (p, ¢, z) with the z axis coincident with the
axis of symmetry of §,. Then, the displacement field has a nonzero
component v(p, z) in the ¢ direction only. Similarly, the nonvanishing
components of the stresses are

& dv
O'z‘p:‘u,a—z, qu,:‘u,(é—p—;). (21)
The equation of equilibrium is

Fv 1dv v e
2

op?

p3i3=_f£ pSE_'f:‘?il
p\p oz’ dz\p ap

the relations (21) and (22) become

;355_,(72-'__32_2:0. (22)
Setting

» oy, ¥ 8,
— £ AT = ——_ 23
¥ prop’ Goo pt az’ (23)
and
Py, 3y Py
2‘ — A =0. (24)

apr  pop 022

Let t, a constant, denote the angle of twist per unit length for a cylinder
without a crack and let the applied torque be 4ruth?. Then, by setting

xo=x+¥p*,  x=p%y, (25)
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equation (24) becomes

gy 1ay Py 4

5p2+p$+5?_? =0. (26)
Note that ¥ vanishes on the cylinder and is equal to —}tp* on S,. Thus,
we have the boundary value problem

vi(fcos2¢) =0 in R, 2n
ycos2e = —4ipteos2¢ on S, (28)
yreos2e =0 on S, {29)

where R is the region between S, and §,, while §, stands for the surface
of the cylinder,

Following the method explained in Sections 6.4, 6.5, and 11.2, we can
readily give an integral-equation formulation to this boundary value
problem. The result is

—31p? = f[Gf,”(p,z;Pi,zl) + 208G\ (p,z; 1,2 )] 6(p (. 2,) p, ds, (30)
C

):

and 1~ 2GEY is the coefficient of cos2(¢ —¢,) in the Fourier expansion
of the free-space Green’s function [cf. (6.4.30)] while G{?} is defined by
equation (11.2.11) with » = 2. The curve C is the bounding curve of S,
in the meridian plane, ds denotes the element of the arc length measured
along €, and both (p, z) and (p;,z,} lie on C.

The next step is tc introduce a small parameter ¢ in the problem and
also to find the constant A4 occurring in the relation (11.1.10). Let a
denote the maximum distance between two points of C and let a <€ b;
then, ¢ = a/b. The constant A4 is found by substituting the expansion for
the modified Bessel function /, in the expression for G'2). Then, it
follows that

where
oy

1 /oy
o(p;,z;) = E‘T}(_ T

n

227G = p?p, " [4 + Galp,z:p1,2))] (31)
where
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r+1 g
3n 2 jvz’KZ(U) " 32

= ~aphe  Pa= x(2r)! L)

1]

and G, is of order Ae? (see Exercise 14).
Thereafter, the analysis is similar to the one given in Section 11.2,
In fact, from (30), we have '

~yp? = [ G prds+p? [ Gy o, s, (33)
C [y

where

o = o[l +(4A,."t)_[p130'ds]'1 ‘ (34)
Loy

The relation (34), in turn, gives
jpﬁa ds = jpﬁa'[l —(4A;~c)jp,3a' ds]"tds.  (35)
[y [ C

As in the case of the electrostatic problem of Section 11.2, o'~ oy,
where o, arises in the integral equation

—iwp? = [ GPoop, ds (36)
<

for the same crack problem in an infinite medium. Then, it follows from
(35) that

fplaads ~ jpﬁao[l —(4A;r)jpl3aods]-‘ ds,  (37)
[ Loy C

that is, the solution for a erack in a cylinder may be found approximately
from the corresponding solution in an infinite medium.

Finally, we evaluate F, the loss of potential energy due to a crack in
an infinite cylinder, in terms of £, the loss of the corresponding quantity
due to a crack in an infinite medium. The value of E is defined by the
formula

E = (4nfy) j plol+ol)dv . (38)
R’
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Using the relations {23} and (25), and after a slight manipulation, the
relation (38) becomes

E = —4112;:1:".9300{9
¢

~ —4n2psz3ao[1 - (4A;z)jp13% ds]™'ds,  (39)
oy [»

or
Ex Eo[l+ (ABofur?ah]7" . (40)

11.5. THEGRY OF DIFFRACTION

Finally, we use the method of this chapter for studying the theory of
diffraction. Indeed, the method was first introduced for solving problems
of this very theory. When we introduce a bounded obstacle B with
surface S in a source-free region of the incident field #, then this field is
disturbed. The total field is =1+ wu, where u, is the diflracted or
scattered field, defined only in the exterior region R_ of §. Following
the procedure of Section 6.6 and that of Example 1 of Section 6.7, we
find that, for a perfectly soft body, we have the following boundary
value problem:

Vi, + k’u, =0, XeR,, {n
U, = —u on S, 2)

and u, satisfies the Sommerfeld radiation condition. The integral-
equation representation formula for this problem, by the method and
notation of Chapter 6, is

u(x) = — [ @B dS, ©)
s
where a(x) = du(x)/dn is the single-layer density. When x approaches

a point on S, we have, in the limit,

m(x) = [o®Ex:YdS, xkes, @

5
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which is a Fredholm integral equation of the first kind for evaluating
the function ¢{x).

For a perfectly rigid obstacle, we have the Neumann boundary value
problem consisting of the differential equation (1) and the boundary
condition

dufon = —awfon on §. (5)

The integral representation formula that embodies (1) and (5) is

) = [w®oBO:Y S, xeR.. ©)
5

When x approaches a point on S, we use the relation (6.6.10) and obtain
u () = fu(x) + [ 4@ BE(:B)an]dS, xEeS  (7)
5

or
2u(x) = t(x) — 2 j @) PE(x;8)/on]dS, x,&eS, (8)
b

where 1(x) = u(x) is the double-layer density.

Example. Let us solve the preblem of the diffraction of a plane wave
by a soft sphere. It is convenient to take spherical polar coordinates
(r,0,¢). Thus, x =P =(r,0,0), § = 0 =(a,0,,9,), and [x—&| = R.

'
Prg e

Q [u.ﬁf,go‘]

Figura 111

In this case (see Figure 11.1)
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al 2
u, (P) = e = | 4 jgkcos0 — cos? 0
3 k3 3 o
- s‘% + Ok . )
¥R 1 ik k'R &R
E N e ] —— — e 4 .
F:0) 4R 4nR * 4n  8rn 24n + O (10)

0{Q) = 00(Q) + ko (Q) + k2 0,(0) + K 03(Q) + OkY). (1])

Substituting (9)-(11) in (4) and equating equal powers of k, we have

1= J ";’g) ds, (12)
5
. _ |e(Q) i55(Q)
iacos0 = J 1R dS+J yo das, (13)
5 5
a* _ [o200) io,(Q) Ros(0)
—-> cos’f = J._“TCR das +J_4R dS__[—Srr as, (14
Ly 5 5

and so on. The integral equations {12){14) are of the same form as
(11.3.79—(11.3.82) and are easily solved by introducing Legendre
polynomials. The solution is

gy, = lfa, 6y = —i+ 3P (cos@y) = —i+ 3icos8,, (15)
a, = —daPy{cos,) — $aP,(cosB,) = 4a — 3acos? @, .
Consequently,
o(Q) = 0(8,)
= (l/a)[1 + ie(3cos0,— 1) + e2(3—3cos?0,) + O], (16)
where £ = ak and we assume that ¢ <€ 1.
The quantities of physical interest in the theory of scattering are the
far-field amplitude and the scattering cross section, which we now
evaluate for the present example. Since the scattered wave is an outgoing

wave and satisfies the radiation condition, we expect its far-field behavior
to be given by
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u(r,0,0) ~ A, @) e*/r . (an
Now, for large r,

R = |x—&| = (rP+a®—2arcosy)*%

= r[1 + (&*/r*) — (2air)cosy]% ~ (r—acosy) , (138)
where ;
cosy = cosCcosf, + sinfsind, cos(e— ) .

Hence, from (3), we have

u,(r, 0, 0) ~ A(O)e}r, (19
where
2r ;.
A(0) = — (a*/4m) “ e~ g(0 Vsin 0, d6, do, (20)
[H)]

is the required far-field amplitude. The next step is to use the expansions
of the terms inside the integral sign of (20), integrate, and obtain

A = — a[l —ie + &*(cosb—-%) + O] . N

The value of the scattering cross section is given by the formula

$.CS. = 2;:[ |4(8)|?sin0 df = 4na?{1 — (¢%/3) + O(%] . (22)
Q

EXERCISES

1. Show that formula (11.2.19) for the capacity is correct to order &°.

2. Instead of spherical coordinates (11.2.12), take oblate-spheroidal
coordinates

z = gel, p = ae[(1-H(1+LH]1%,

and solve the electrostatic potential problem for the case of an oblate
spheroid placed symmetrically inside a grounded infinite cylinder of
radius 5. Show that the capacity C of this condenser is
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ae 2ee
C = -/ 1 l - - —1
sin” e sin e

x [1(0) g 4 2 (e !(4)]}'* 06,

where the quantities 7(2m) are defined by (11.2.20).
Hint: Use the expansion

Io(pp)e® =} B,(p) P,(DP, () .
where the P, are Legendre polynomials.

3. Following a procedure similar to that in Exercise 2, solve the electro-
static potential problem for a prolate spheroid.

4. Solve Exercises 2 and 3 when the spheroids are placed between two
grounded parallel plates.

5. Derive formula (11.3.43),

6. Substitute the values of the densities o4, g,, 0,, and 65 as given by
(11.3.65) in (11.3.51) and obtain the velocity field.

7. By using formula (11.3.61), obtain the frictional torque experienced
by a sphere of radius ¢ which is oscillating in a viscous fluid.

8. Do the same as in Exercise 7 for a spheroid and a disk.

9. Calculate the O(##) term in formula (11.3.72) explicitly and use this
expression to deduce an approximate formula for the drag experienced
by a solid in Oseen flow. Hlustrate this formula for the case of a sphere.

10. Use the values of the charge densities as given by the formulas
(11.3.86) and evaluate the velocity field set up in Oseen flow when a
sphere is rotating uniformly and is placed symmetrically inside a circular
cylinder.,

11. Find the torque experienced by a sphere which is rotating uniformly
in Oseen flow and is bounded by a pait of parallel walls z = X ¢. Evaluate
also the velocity field.

12. Extend the analysis of the steady Oseen flow in the text to the case
of the steady-state vibrations of axially symmetric solids in Oseen flow.
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13. Use the analysis of Section 11.4 and discuss the problem of a
spherical inclusion in an elastic half-space.

14. Derive the integral equation (11.4.30). Prove that the quantity G,
occurring in the relation (11.4.31) is of order Ae?. Also prove that o'
occurring in the relation (11.4.33) is such that 6’ = a4[1+ O(2")].

15, Start with the integral equation (11.5.8) and solve the problem of
diffraction of a plane wave by a perfectly rigid sphere.

16. Solve the problem of diffraction of a plane wave by a perfectly soft
and by a rigid circular disk. Also solve the dual problem of diffraction
by an aperture.

17. Use the approximation

2 p2

8

] 1 k
11 HEKkR) = 5 (g+log R) + (g—1+log R) + log 4k {O(k%)},

where ¢ =y +log 3k — 4ni (v is Euler’s constant), and solve the problem
of diffraction of a plane wave by a soft and by a rigid circular cylinder.
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A.1l. To prove the identity

53 Ez

“. ” F(s,) ds, ds, - ds,_, ds,

= [l/(n— l)lj f (s—1y~t F(dt, )
we begin with the formula
Eis} B
gJ}mam=jg99w+ﬂummﬁtﬁbAmn@, )
s as ds ds
A A

for differentiation of an integral involving a parameter. Let us apply this
formula for the differentiation of the function £, (s) defined by the relation

Lis) = [ =y F@ydr, @

285
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where # is a positive integer and a is a constant. For this purpose, set

fis,0) = (s—0" " FQD)
in (2). The result is

dLjds = (n—1) f S=0" 2 F(O) dt + [(s— 8"  F()]=s

=wm—DI_,, n>1. @
For n=1, we have directly from (3)
diyjds = F(35) . (5)
From the recurtence relation (4), we obtain
c{*I,,,fds“ =mn-—1Dn=-2)--(n-k)I, _,, n>k, (6)
which for k = n—1 becomes
d" LS = (n—1)UL(5) . (&)
Differentiating (7) and using (5) results in the equation
d"Ilds" = (n— 1)1 F(5) . (8)

Furthermore, from the relations (3), (6), and (7) it follows that (s}
and its first #— 1 derivatives all vanish when s = a. Hence, equations (5)
and (8) yield

L) = [ Fis)ds,

Lis) = ].11 (8;) ds; = ]'].ZF(Sl) ds, ds, , E)
L =nm-1Nn! ij! szF(sl) ds, dsg veds, o ds, . (10)

Combining (3) and (10}, we have the required identity (1).
A.2. It can be easily proved by the complex integration method that
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k
, /o’
! 1!‘ e HD (po)d,(pp) dp

T P v 2 2
fp (y —1) Julpv)J,(pp) dp = | (11
h k 2
i f(kTE‘pT)yg I (o) H Y (pp) dp ,
[1]
pzo,
where
—itk*—pH%, kzp,
— 12
’ {(pz—k‘)’é, p2k, (12)
and v, p> 0.

Suppose that ¢ = p and let the complex plane be s = ¢+ 7. Integrating
{[s*/(s* —k*)*%] — s} H(" (s0)J, (sp)

Figure A.1
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around a contour C, in the upper right-hand quadrant passing over the
branch point 5 =k, as shown in Figure A.1, we get

§ {L52s* — k28] = s} HO (s}, (sp) ds = 0,
Cy

because there are no singularities within this contour. If we let §,¢—-0
and R— <o, the contributions from the corresponding arcs tend to zero.
Hence,

k 0_2. o 0,2
J(;—(-F_—az)—% — 0') Hf‘”(aﬂ).},‘(op) do + I(m — D’)
a k

x HY(ov)J, (ap) do

.2
+ ;J(—I(—Ti:k—z)% - s'-c) HV o), (ixp) de = 0 (13)

o

Similarly, integrating
{Ls*/(s? = k%] — s} HP (s0) ], (30)

around a contour €, in the lower right-hand quadrant and passing under
the branch point s = &k gives

) o* ) T
J(:;m - O’) H.I(l )(O'U)Jn{ap) do + J(m - 0’)
0 k

x HP(ov)J, (ap) do
o

: 72 . : :
— ;j(m + 11:) H®(—it) g (—izp)dr = 0. (14)
Now using the relation H{" (ite)J, (itp) = — H (— ito)J,(—izp) and
adding equations (13) and (14), we obtain, for v = p,
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[or]

J.( kz)‘/z ) S (6v)J,(6p) do
k

ja.f (ov)J, (op) do — JW Won)d (ep)do, (15)

¢

where Yy is the Bessel function of the second kind. It follows from.(12)
and (15) that the left-hand side of (11) is

j p(g - I)Jn(pv)ip.(ﬂp) dp

43
k
ip?
= f(m - P) Ju(pr)d,(pp) dp
]

2
¥ J(Gfi;c_zya _p)"’#(f’”)-f,‘(pp) dp
K

k

2
f.[ 0625.7)% [Fu(p) + 1Y, (p0)]J,(£p) dp
0

{_
= ijm HPD(po), (pp)dp, 02 p,
0

which proves the first part of formula (11). The second part follows in
a similar fashion.



BIBLIOGRAPHY

8,

9.
10,
I1.
12,

. Bocher, M., ““An Introduction to the Study of Integral Equations’ {Cambridge

Tracts in Mathematics and Mathematical Physics, No. 10}). Cambridge Univ.
Press, 1909.

. Biickner, H., “Die practische Behandlung von Integralgleichungen™ {Ergebnisse

der angewandten Mathematik, No. 1}. Springer, New York, 1952,

. Carrier, G. F.,, Krook, M., and Pearson, C. F., “Functions of a Complex

Variable,” McGraw-Hili, New York, 1966,

. Courant, R., and Hilbert, D., “Methods of Mathematical Physics,” Vols. T

and IL Wiley, New York, 1953, 1962,

. Haberman, W. L., and Harley, E. E., Numerical evaluation of integrals contain-

ing modified Bessel functions, David Taylor Model Basin Report No. 1580,
1964,

. Hilderbrand, F. B., “Methods of Applied Mathematics,” 2nd ed. Prentice-Hall,

Englewood, New Jersey, 1965,

. Irving, 1., and Mullineux, N,, *Methods in Physics and Engineering.” Academic

Press, New York, 1959,

Jain, D, L., and Kanwal, R. P., “Mixed Boundary Value Problems of Math-
ematical Physics.” In preparation,

Kellog, O. D, “Foundations of Potential Theory.” Dover, New York, 1953.
Lovitt, W, V., “Linear Integral Equations.” Dover, New York, 1950,

Mikhlin, 8. G., “Integral Equations.” Pergamon Press, Oxford, 1957.

Morse, P. M., and Feshback, H., “Methods of Theoretical Physics,” Vols. [
and II, McGraw-Hill, New York, 1953,

290



14.
15.

17,
18.

19.

20,
21.

22,

23,

BIBLIOGRAPHY 291

. Mushkhelishvili, N. I., “Singular Integral Equations,” 2nd ed. P. Noordhofl

N.V., Gronignen, Holland, 1946.

Peterovskii, 1. G., *Integral Equations,” Grylock Press, New York, 1957.
Pogorzelski, W., ““Integral Equations and Their Applications,™ Vol, 1, Pergamon
Press, Oxford, 1966,

. Smirnov, V. I, “Integral Equations and Partial Differential Equations.”

Addison-Wesley, Reading, Massachusetts, 1964.

Sneddon, 1. N., “Fourier Transforms.” McGraw-Hill, New York, 1951.
Sneddon, I. N., “Mixed Boundary Value Problems in Potential Theory."” Wiley,
New York, 1966.

Stakgold, 1., “Boundary Value Problems of Mathematical Physics,” Vols. [
and II. Macmillan, New York, 1967, 1968,

Tricomi, F. G., “Integral Equations.” Wiley, New York, 1957.

Watson, G. N., “A Treatise on the Theory of Bessel Functions.” Cambridge
Univ, Press, London and New York, 1962,

Weinberger, H. F., ““A First Course in Partial Differential Equations.” Blaisdell,
New York, 1965,

Yosida, K., “Lectures on Differential and Integral Eguations,” Wiley, Wew
York, 1960






INDEX

A
Abel integral equation, 167, 200, 206,
211

Acoustic diffraction

by annalar disk, 120

by rigid body, 280

by rigid disk, 129

by soft body, 279

by soft disk, 118

by soft sphere, 280
Adjoint, 18, 72
Airfail equation, 209
Analytic function, 30
Approximation method, 23
Associated Legendre function, 105

B

Besskl equation, 83

Bessel function, 104, 114, 138, 216,
232, 241, 277, 289

Bessel operator, 92 -

Bessel's inequality, 136, 140, 144, 195

Beta function, 169, 170

Biharmonic equation, 123

Bilinear form, 142, 144, 148, 150, 165

Born appreximation, 131

Boundary effects, 258, 273

Boundary value problem, 64, 67, 72,
76, 78, 79ff

Branch point, 288

C
Capacity
of circular disk, 244
of condenser, 255

of conductor, 253, 254
of sphere, 248, 249

Cauchy principle value, 170, 174, 175,
177

Cauchy-Riemann equations, 186

Cauchy sequence, 134

Cauchy type integral, 176-178, 180,
181, 184, 187

Cauchy’s integral formula, 128

Cauchy’s integral theorem, 128, 179

Charge density, 101, 103

Compact set, 159

Complete continuity, 159-161

Completeness, 134, 150

Consistency condition, 81, 82, 86-88,
102, 109

Contour integral, 176, 288

Convergence in mean, 136, 147

Convolution integral, 5, 197-200

Crack problem, 276, 278

D

Degenerate kermnel, 4, 8

Difference kernel, 5, 199

Dilation vector, 130, 272-274

Dimensionless parameter, see pertur-
bation parameter

Dirac delta function, 7}

sifting property of, 70, 96, 217

Dirichlet condition, 94

Dirichlet problem, 98-10Q, 107, 117,
129

Displacement vector, 130

Distributions, 71

Divergence theorem, 35
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E

Eigenfunction, 6ff
Eigenvalue, 6ff

index of, 17

multipticity of, 17, 55, 57, 141
Elastic bar, 68

bending rigidity of, 69

transverse oscillations of, 68
Elastic half-space, 120, 284

torsion, 216, 222

torsional oscillations, 120, 231, 237
Elastic medium

cavity in, 275

crack in, 276

inclusions in, 275, 284

Lamé’s constants of, 130
Elasticity, 272, 275, 276
Elastodynamics, 273, 274
Elastostatics, 272
Electrostatic potential, 96, 254, 283

of anmular disk, 113

of axially symmetric conductor, 113

of circular disk, 103, 110, 243

of spherical cap, 245, 246
Electrostatics, 253, 263
Entire function, 35, 40
Exciting force, 274
Extremal principle, 161

F
Faltung, 6
Far-field amplitude, 281, 282
Fredhelm alternative, 14, 20
Fredholm integral equation, 2
Fredholm theory, 41
Fredholm’s determinant, 45, 46
Fredholm’s minor, 52, 33, 60
Fredholm’s series, 45, 47-49, 55, 58
Fredholm’s theorem, 16, 43, 48, 51,
57, 59
Fourier expansion, 114, 135, 136,
i46-148, 157, 262, 263, 277
Fourier integral, 194
Fourier series, see Fourier expansion
Fourier transform, 66, 114, 195, 196,
198
Functional analysis. 158
Fundamental solution, 96, 116

G
Geometric series, 28, 32, 38, 111
Gram-Schmidt procedure, 135, 140,
141, 165
Green's formula, 72
Green's function, 72, 77, 80, 116, 1216
causal, 75
free space, 96, 107, 116, 118
modified, 86, 87
Green's identities, 95
Green’s tensor, 123, 124, 126, 130,
258, 268, 272-274
Green's vector, 123, 124, 126, 258, 268

H

Hankel function, 232, 241

Harmonic function, 95, 97, 102, 186,
262

Heat conduction, 126

Heaviside function, 71, 78

Helmholiz equation, 94, 96, 116, 118,
121

Hermitian matrix, 142

Hilbert formula, 187-189

Hilbert kernel, 184, 185, 150

Hilbert-Schmidt theorcm, 146, 148,
150, 151, 165

Hilbert space, 133, 137

Hilbert transform

finite, 207-209, 212
infinite, 210, 213

Hilbert type integral equation, 187,
188, 190, 209

Hdider condition, 175, 177

Hélder continuous, 175-178, 180

Hypergeometric function, 226, 227

[

Index of eigenvalue, 17
Influence function, 75
Initial value problem, 61, 67, 72-74(f
Inner product, 6, 134
Integrable function, 3
Integral equation, 3

of first kind, 2

Fredholm, 2

homogeneous, 3

linear, 2

of second kind, 3



singular, 3, 1671

of third kind, 3

Volterra, 3
Integral representation formula, 61, 75,

96, 107, 255, 260-262, 265

Integral transform methods, 195
Integrodifferential equation, 38
Iterated kernels, 27, 29, 31, 35, 199
Iterative scheme, 26

K
Kernel, 3
complex-syminetric, 132
degenerate, 4, 3ff
Hermitian, 13, 132
negative definite, 149, 150
nonnegative definite, 149, 150
nonpositive definite, 149, 150
positive definite, 149, 150, 164
separable, 4, 8ff
symmetric, 5, 133
truncated, 143, 145, 148
Kinematic viscosity, 124
Kronecker delia, 104

L

& ,-function, 4, 26, 30, 136, 147, 148,
133, 159

#y-kernel, 4, 26, 30, 133, 141, 143,
144, 146, 149-152, 157, 138, 160,
161, 165 .

#a-space, 133, 134, 136, 137, 158, 159

Lagrange multipliers, 162

Laplace equation, 94, 95, 101, 107¢f

Laplace transform, 70, 197-199, 201-
203, 205

Laplacian, 95

Lebesgue integral, 4

Legendre function, 105

Legendre operator, 90

Legendre polynomial, 138, 164, 247,
256, 281, 283

Linear independence, 5

Linear operator, 2, 196

Lipschitz condition, 175

Low-Reyneldsnumberhydrodynamics,
257

M
Maximum-minimum principle, 161
Mehler—Dirichlet integral, 247
Mercer’s theorem, 149, 150
Method

of images, 107, 110, 121
of successive approximations, 26
Metric, 133
natural, 133, 134
space, 134
Minkowski inequality, 8, 133
Mixed boundary value problem, 94,
214
Modified Bessel function, 114, 138, 277

N

Navier~Cauchy equations, 272
Neumann condition, 94
Neumann preblem, 99, 101-103, 109,
117, 280
Neumann series, 27, 29-31fF
Norm, 6, 133
O

Operator

adjoint, 72, 180

Bessel, 92

bounded, 158-160

completely continuous, 159-161

Fredholm, 134

Legendre, 90

linear, 2, 196

method, 158

self-adjoint, 72, 89, 90, 93, 147
Ordinary differential equation, 61
Orthogoenal functions, 6, 135
Orthonormal functions, 135-138fT
Oseen flow

rotary motion in, 269, 271

steady, 124

steady-state vibrations in, 283

translational motion in, 268

P
Parseval’s identity, 137, 157
Partial differential equation, 94
elliptic, 94
hyperbolic, 94
parabolic, 94
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Perturbation metheds, 250
Perturbation pavameter, 120, 227, 239,
240, 250, 257, 263
Picard’s method, 26
Plemelj formulas, 178, 180, 182, 185
Poincare—Bertrand formula. 179, 181,
182
Poisson’s equation, 94, 96, 101
Poisson’s integral formula, 107, 128
Pole, 176, 211
Potential layer, 97, 117
double, 97, 98, 100, 103, 129, 280
single, 97,101, 102, 117, 127,129,279
volume, 97, 117, 127
Pressure, 123
Principal axes of resistance, 259

R

Radiation condition, 118, 129, 274,
279, 281

Rayleigh-Ritz method, 161, 162, 163,
164

Regular curve, 176

Regularity conditions, 3

Representation formula, see Integral
representation formula

Residue, 211

Resistance tensor, 258-260

Resolvent kernel, 11-134f

Reynolds number, 124, 125, 257, 269

Rigmann Hilbert problem, 182, 183

Riemann integral, 4, 173, 175

Riesz-Fischer theorem, 136, 149, 152

5
Scalar product, 6
Scattering cross section, 282
Schradinger equation, 131
Schwarz inequality, 6, 28, 29, 38, 133ff
Separable kernel, 4, §
Shear modulus, 120

Shear viscosity, 26l

Sine transform, 195

Singular integral eguation, 3, 167
weakly, 170

Sonine integral, 217

Source density, 263, 266, 271

Spherical harmonics, 105

Square integrable function, 3

Stokes flow
boundary effects in, 258
longitudinal oscillations in, 260
rotary motion in, 261, 269, 275
rotary oscillations in, 264, 271
steady, 123, 257

Sturm-Liouville problem, 30

T

Tangential stress, 263

Taylor’s thearem, 259

Three-part boundary value problem,

219

generalized, 234

Torque, 228, 265, 267, 268, 271, 283

Trace of kernel, 133, 149

Traction field, 273

Traction tensor, 273, 275

Transpose, 18-20, 57-60

Trial function, 163

Two-part boundary value problem, 214
generalized, 229

¥
Variational principle, 161
VYelocity potential, 118
Velocity vector, 123
Volterra integral equation, 3

w

Weakly singular kernel, 170
Wronskian, 74



